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What Is the System Identification Toolbox?
The System Identification Toolbox enables you to build accurate, simplified 
models of complex systems from noisy time-series data.

It provides tools for creating mathematical models of dynamic systems based 
on observed input/output data. The toolbox features a flexible graphical user 
interface that aids in the organization of data and models. The identification 
techniques provided with this toolbox are useful for applications ranging from 
control system design and signal processing to time-series analysis and 
vibration analysis. 

For Simulink® users, the System Identification Toolbox provides a library, 
slident, that contains blocks for performing system identification in the 
Simulink block diagram environment. In addition, you can use this library to 
do the following:

• Simulate any idmodel with or without noise

• Use iddata objects as data sources and sinks
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Basic Questions About System Identification

What is system identification?
System identification enables you to build mathematical models of a dynamic 
system based on measured data. You adjust the parameters of a given model 
until its output coincides as well as possible with the measured output.

How do you know if the model is any good?
A good test is to compare the output of the model to measured data that was 
not used for the fit (called validation data).

Can the quality of the model be tested in other ways?
It is also valuable to look at the data that could not be reproduced by the model 
(the residuals). This should not be correlated with other available information, 
such as the system’s input.

What models are most common?
The techniques apply to general models. The most common models are 
difference-equation descriptions, such as ARX and ARMAX models, as well as 
all types of linear state-space models.

Do you have to assume a model of a particular type?
For parametric models, you specify the model structure. This can be as easy as 
selecting a single integer — the model order — or it can involve several choices. 
If you assume that the system is linear, you can directly estimate its impulse 
or step response by using correlation analysis, or its frequency response by 
using spectral analysis. This enables useful comparisons with other estimated 
models.

What does the System Identification Toolbox contain?
It contains all the common techniques used to adjust parameters in all kinds of 
linear models. It also enables you to examine the quality of model properties, 
as well as to preprocess and polish the measured data.

Isn’t it a big limitation to work only with linear models?
No, actually not. Many common model nonlinearities are such that the 
measured data should be nonlinearly transformed (by squaring a voltage input 
if the stimulus is the power, for example). You can get quite far by using 
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physical insight about the system you are modeling to determine the 
appropriate transformations of variables that may make the model linear.

How do I get started?
If you are a beginner, browse through Chapter 2, “The Graphical User 
Interface.” Then try out a couple of the data sets that come with the toolbox. 
Use the graphical user interface (GUI) and check out the built-in help 
functions.

Is this really all there is to system identification?
There is a great deal written on the subject of system identification. However, 
the best way to explore system identification is by working with real data. It is 
important to remember that any estimated model, no matter how good it looks 
on your screen, is only a simplified reflection of reality. Surprisingly often, this 
is sufficient for rational decision-making.
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Common Terms Used in System Identification 
This section defines some of the terms that are frequently used in system 
identification:

• Estimation data is the data set that is used to create a model of the data. In 
the GUI, this is the same as working data.

• Validation data is the data set (different from estimation data) that is used 
to validate the model. Validation is accomplished by simulating the model for 
the validation data and then computing the residuals from the model for this 
data.

• Model views are the various ways of inspecting the properties of a model, 
such as zeros and poles, as well as transient and frequency responses.

• Data views are the various ways of inspecting the properties of data sets. It 
is most common and useful to plot the data and scrutinize it for so-called 
outliers. These are unreliable measurements that can arise from failures in 
the measurement equipment. Furthermore, the frequency content of the 
data signals can also be most revealing when viewed on a periodogram or a 
spectral estimate.

• Model sets or model structures are families of models with adjustable 
parameters. Parameter estimation is the process of finding the “best” values 
of these adjustable parameters. The system identification problem is to find 
both the model structure and good numerical values of the model 
parameters.

• Parametric identification methods are techniques for estimating 
parameters for a given model structure. This is a matter of using numerical 
search to find those numerical values of the parameters that give the best 
agreement between the model’s (simulated or predicted) output and the 
measured output.

• Nonparametric identification methods are techniques to estimate model 
behavior without necessarily using a given parameterized model set. Typical 
nonparametric methods include correlation analysis, which estimates a 
system’s impulse response, and spectral analysis, which estimates a 
system’s frequency response.
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• Model validation is the process of gaining confidence in a model. This is a 
highly subjective task, which involves scrutinizing all aspects of the model 
properties. An important tool is to study the model’s ability to reproduce the 
behavior of the validation data set by simulation and prediction. Another 
useful technique is to analyze the properties of the residuals.
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Basic Information About Dynamic Models
System identification is about building dynamic models. Therefore, some 
knowledge about dynamic models is a prerequisite for using this toolbox 
successfully. This topic is addressed in several places in Chapter 3, “Tutorial.” 
Numerous textbooks are also available for introductory and in-depth study. 
This section describes what you need to know about dynamic models at the 
most basic level to get started with the System Identification Toolbox. 

Signals
Models describe relationships between measured signals. It is convenient to 
distinguish between input signals and output signals, such that the outputs are 
partly determined by the inputs. 

For example, consider an airplane where the inputs are control surfaces, such 
as ailerons and elevators, and the outputs are the orientation, velocity, and 
position of the airplane. In most cases, the outputs are also affected by signals 
other than the measured inputs. Such unmeasured inputs are called 
disturbance signals or noise. For the airplane, these additional signals would 
be wind gusts and turbulence effects.

If inputs, outputs, and disturbances are denoted by u, y, and e, respectively, the 
relationship is depicted in the following figure. 

Input Signals u, Output Signals y, and Disturbances e

All these signals are functions of time, and the value of the input at time t is 
denoted by u(t). The modeling problem is to describe how these three signals 
are related. In system identification, only discrete-time points are often 
considered because instruments typically record signals at discrete time 
instants, which are typically equally spaced with a sampling interval of T time 
units. 

y

e

u
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The Basic Dynamic Model
The basic relationship between signals is the linear difference equation. For 
example, consider the equation

Such a relationship informs us how to compute the output y(t) if the input is 
known and the disturbance can be ignored:

Therefore, the output at time t is a linear combination of past outputs and past 
inputs. This is a dynamic model because the output at time t depends on the 
input signal at previous time instants. 

In this case, the system identification problem is then to use measurements of 
u and y to determine

• The coefficients (such as -1.5 and 0.7)

• How many delayed outputs to use in the description (in this example, there 
are two: y(t-T) and y(t-2T))

• The time delay in the system (in the second equation, the time delay is 2T 
because it takes 2T time units before a change in u affects y). 

• How many delayed inputs to use (two in the example: u(t-2T) and u(t-3T)). 
The number of delayed inputs and outputs is usually referred to as the model 
order.

Variants of Model Descriptions
The basic dynamic model given above is called an ARX model. There are 
several variants of this model known as output-error (OE) models, ARMAX 
models, FIR models, and Box-Jenkins (BJ) models, which are described later in 
this book. At a basic level, it is sufficient to think of these models as variants of 
the ARX model that also include a characterization of the properties of the 
disturbance e.

Linear state- space models are another class of models, which is treated in more 
detail below. The essential model-structure variable is the model order, which 
is a scalar. Then, you only have “one knob to turn” when you search for a 
suitable model description.

y t( ) 1.5y t T–( )– 0.7y t 2T–( )+ 0.9u t 2T–( ) 0.5u t 3T–( )+= ARX( )

y t( ) 1.5y t T–( ) 0.7y t 2T–( )– 0.9u t 2T–( ) 0.5u t 3T–( )+ +=
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General linear models can be described symbolically by

y=Gu+He

where the measured output y(t) is the sum of a contribution from the measured 
input u(t) and a contribution from the noise H e. The symbol G denotes the 
dynamic properties of the system, that is, how the output is formed from the 
input. For linear systems, G is the transfer function from input to output. The 
symbol H refers to the noise properties and it is called the disturbance model. 
H describes how the disturbances at the output are formed from some 
standardized noise source e(t). 

State-space models are common representations of dynamic models. They 
describe the same type of linear difference relationship between the inputs and 
the outputs as in the ARX model, but state-space models are rearranged so that 
only one delay is used in the expressions. To achieve this, additional variables, 
state variables, are introduced. State variables are not measured, but can be 
reconstructed from the measured input-output data. This is especially useful 
when there are several output signals, i.e., when y(t) is a vector. Chapter 3, 
“Tutorial,” gives more details about this. For basic use of the toolbox, it is 
sufficient to know that the order of the state-space model relates to the number 
of delayed inputs and outputs used in the corresponding linear difference 
equation. The state-space representation looks like

x(t+1)=Ax(t)+Bu(t)+Ke(t)

y(t)=Cx(t)+Du(t)+e(t)

Here x(t) is the vector of state variables. The model order is the dimension of 
this vector. The matrix K determines the disturbance properties. Notice that if 
K = 0, then the noise source e(t) affects only the output, and no specific model 
of the noise properties is built. This case corresponds to H = 1 in the general 
linear model above, and is usually referred to as an output-error model. Notice 
that D = 0 means that there is no direct influence from u(t) on y(t). Thus the 
effect of the input on the output all passes via x(t) and is delayed by at least one 
sample. The first value of the state variable vector x(0) reflects the initial 
conditions for the system at the beginning of the data record. When dealing 
with models in state-space form, you decide whether to estimate D, K, and x(0), 
or to set them to zero.

How to Interpret the Noise Source
In many cases of system identification, the effects of the noise on the output are 
insignificant compared to those of the input. With good signal-to-noise ratios 
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(SNR), it is less important to have an accurate disturbance model. 
Nevertheless, it is important to understand the role of the disturbances and the 
noise source e(t), whether it appears in the ARX model or in the general 
descriptions given above. 

When dealing with disturbances, it is important to

• Understand white noise 

• Interpret the noise source

• Use the noise source when working with the model 

How can you understand white noise? From a formal point of view, the noise 
source e is normally regarded as white noise. This means that it is entirely 
unpredictable. In other words, it is impossible to guess the value of e(t) no 
matter how accurately the past data up to time t-1 has been measured.

How can you interpret the noise source? The actual disturbance contribution to 
the output, H e, has real significance. It contains all the influences on the 
measured y, known and unknown, that are not contained in the input u. It 
explains the fact that even if an experiment is repeated with the same input, 
the output signal is typically somewhat different. However, the source of the 
noise, e, need not have any physical significance.In the airplane example 
mentioned earlier, the disturbance effects are wind gusts and turbulence. 
Describing these as arising from a white noise source via a transfer function H 
is just a convenient way of capturing their character.

How can you deal with the noise source when using the model? If the model is 
only used for simulation, i.e., the responses to various inputs are to be studied, 
then the disturbance model plays no immediate role. Because the noise source 
e(t) for new data is unknown, it is taken as zero in the simulations so as to study 
the effect of the input alone (a noise-free simulation). Making another 
simulation, with e being arbitrary white noise, will reveal how reliable the 
result of the simulation is but will not give a more accurate simulation result 
for the actual system’s response. It is a different thing when the model is used 
for prediction: Predicting future outputs from inputs and previously measured 
outputs also means that future disturbance contributions have to be predicted. 
A known, or estimated, correlation structure for disturbances (which is really 
the disturbance model H) allows the prediction of future disturbances based on 
the previously measured values.

The need for and the usage of the noise model can be summarized as follows:
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• It is, in most cases, required to obtain a better estimate for the dynamics, G.

• It indicates the reliability of noise-free simulations.

• It is required for reliable predictions and stochastic control design.

Terms to Characterize the Model Properties
The properties of an input-output relationship, such as the ARX model, follow 
from the numerical values of the coefficients and the number of delays used. 
This is, however, a fairly implicit way of talking about the model properties. In 
practice, the following terms are used:

Impulse Response
The impulse response of a dynamic model is the output signal that results 
when the input is an impulse; i.e., u(t) is zero for all values of t except t=0, 
where u(0)=1. It can be computed as in the equation following (ARX), by setting 
t equal to 0, T, 2T, ... , and by setting y(-T)=y(-2T)=0 and u(0)=1.

Step Response
The step response is the output signal that results from a step input; i.e., u(t) 
is 0 for negative values of t and 1 for positive values of t. The impulse and step 
responses together are called the model’s transient response.

Frequency Response
The frequency response of a linear dynamic model describes how the model 
reacts to sinusoidal inputs. If the input u(t) is a sinusoid of a certain frequency, 
then the output y(t) is also a sinusoid of this frequency. The amplitude and the 
phase (relative to the input) will, however, be different. This frequency 
response is most often depicted by two plots: one that shows the amplitude 
change as a function of the sinusoid’s frequency, and one that shows the phase 
shift as a function of frequency. This is known as a Bode plot.
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Zeros and Poles
The zeros and the poles are equivalent ways of describing the coefficients of a 
linear difference equation, such as the ARX model. The poles relate to the 
output side and the zeros relate to the input side of this equation. The number 
of poles (or zeros) is equal to the number of sampling intervals between the 
most and least delayed output (or input). In the ARX model example in the 
beginning of this section, there are two poles and one zero. 
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The Basic Steps of System Identification
The system identification problem is to estimate a model of a system based on 
the observed input-output data. Several ways to describe a system and to 
estimate such descriptions exist. This section provides a brief account of the 
most important approaches. 

The procedure to determine a model of a dynamic system from observed 
input-output data involves three basic ingredients:

• The input-output data

• A set of candidate models (the model structure)

• A criterion to select a particular model in the set, based on the information 
in the data (the identification method)

The typical identification process consists of stages where you iteratively select 
a model structure, compute the best model in the structure, and evaluate this 
model’s properties. This cycle can be itemized, as follows:

1 Design an experiment and collect input-output data from the process to be 
identified.

2 Examine the data. Polish the data by removing trends and outliers, and 
select useful portions of the original data. You can also apply filters to the 
data to enhance important frequency ranges.

3 Select and define a model structure (a set of candidate system descriptions), 
within which a model is to be found.

4 Compute the best model in the model structure according to the 
input-output data and a given criterion for goodness of fit.

5 Examine the properties of the model obtained.

6 If the model is good enough, then stop; otherwise go back to step 3 to try 
another model structure. You can also try other estimation methods (step 4), 
or work further on the input-output data (steps 1 and 2).
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The System Identification Toolbox offers several functions for each of these 
stages in the process. 

For step 2, the System Identification Toolbox offers routines to plot the data, 
filter the data, and remove trends in the data, as well as to resample and 
reconstruct missing data.

For step 3, there are a variety of nonparametric models, the most common 
black-box input-output and state-space structures, as well as general 
tailor-made linear state-space models in discrete and continuous time.

For step 4, general prediction error (maximum likelihood) methods, as well as 
instrumental variable methods and subspace methods, are offered for 
parametric models, while basic correlation and spectral analysis methods are 
used for nonparametric model structures.

For examining the models in step 5, many functions are provided to compute 
and present frequency functions, poles, and zeros, as well as to simulate and 
predict with the model. There are also functions for transforming between 
continuous-time and discrete-time model descriptions, as well as to formats 
that are used in other toolboxes (such as the Control System Toolbox and the 
Signal Processing Toolbox).
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A Startup Identification Procedure
There are no guaranteed strategies for creating good models in system 
identification. Given the number of possibilities, it is easy to get confused about 
what to do, what model structures to test, and so on. This section describes one 
strategy that often works well. The steps refer to functions within the GUI, but 
you can also go through them in command mode. For the basic commands, see 
Chapter 4, “Function Reference.”

Step 1: Look at the Data 
Plot the data. Look at it carefully and try to infer the dynamics. Can you see 
the effects in the outputs due to the changes in the input? Can you see 
nonlinear effects, such as different responses at different levels, or different 
responses to a step-up and a step-down? Are there portions of the data that 
appear to be messy or noninformative? Use these insights to select portions of 
the data for estimation and validation.

Do physical levels play a role in your model? If not, detrend the data by 
removing its mean. The models will then describe how changes in the input 
lead to changes in the output, but do not explain the actual levels of the signals. 
This is the normal situation.

The default situation with good data is that you detrend by removing the mean, 
then select the first half or so of the data record for estimation purposes, and 
use the remaining data for validation. 

This is what happens when you select Preprocess -> Quickstart in the main 
ident window.

Step 2: Get a Feel for the Difficulties
Select Estimate -> Quickstart in the main ident window. This computes and 
displays the spectral analysis estimate, the correlation analysis estimate, a 
fourth-order ARX model with a delay estimated from the correlation analysis, 
and a default order state-space model computed by n4sid. This gives three 
plots. 

Check the agreement between the following:

• Spectral analysis estimate and the frequency functions of the ARX and 
state-space models
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• Correlation analysis estimate and the transient responses of the ARX and 
state-space models

• Measured validation data output and the simulated outputs of the ARX and 
state-space models

If the agreements are reasonable, then the problem is not so difficult and a 
relatively simple linear model will do the job. Proceed to step 4 and perform 
some fine-tuning of model orders and noise models, if necessary. Otherwise go 
to step 3.

Step 3: Examine the Difficulties
There can be several reasons why the comparisons in step 2 did not look good. 
This section discusses the most common ones and the approaches for handling 
them.

Model Is Unstable
The ARX or state-space model might turn out to be unstable, but could still be 
useful for control purposes. Change to a 5- or 10-step-ahead prediction instead 
of simulation in the Model Output View.

Feedback in Data
If there is feedback from the output to the input due to some regulator, then 
the spectral and correlation analysis estimates are not reliable. Discrepancies 
between these estimates and the ARX and state-space models can therefore be 
disregarded in this case. In the Model Residuals View of the parametric 
models, feedback in the data can appear as a correlation between residuals and 
input for negative lags.

Disturbance Model
If the state-space model is clearly better than the ARX model at reproducing 
the measured output, this is an indication that the disturbances have a 
substantial influence and it will be necessary to model them carefully.

Model Order
If a fourth-order model does not give a good Model Output plot, try using an 
eighth-order model. If the fit improves, it follows that higher order models are 
required but that linear models could be sufficient.
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Additional Inputs 
If the Model Output fit has not significantly improved by the approaches 
discussed thus far, think about the physics of the application. Are there more 
signals than have been, or could be, measured that might influence the output? 
If so, include these among the inputs and try a fourth-order ARX model from 
all the inputs again. (Note that the inputs need not be control signals; anything 
measurable, including disturbances, can be treated as inputs.)

Nonlinear Effects 
If the fit between measured and model output is still bad, consider the physics 
of the application. Are there nonlinear effects in the system? In that case, form 
the nonlinearities from the measured data and add those transformed 
measurements as extra inputs. For example, if you realize that it is the 
electrical power that is the driving stimulus in a heating process, and 
temperature is the output, this could be as simple as forming the product of 
voltage and current measurements. What transformations you choose depends, 
of course, on the application. However, it does not take very much work to form 
a number of additional inputs by reasonable nonlinear transformations of the 
measured inputs, and just test whether including them improves the fit.

Still Problems?
If none of these tests leads to a model that reproduces the validation data 
reasonably well, the conclusion might be that a sufficiently good model cannot 
be produced from the data. There can be many reasons for this. It might be that 
the system has quite complicated nonlinearities that cannot be realized on 
physical grounds. In such cases, nonlinear, black-box models could be a 
solution. The most frequently used models of this character are the Artificial 
Neural Networks (ANN).

Another important reason for problems might be that the data does not contain 
sufficient information, for example, because of bad signal-to-noise ratios, large 
and nonstationary disturbances, and varying system properties. 

Otherwise, use the insights from this step about suitable inputs and proceed to 
step 4.
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Step 4: Fine-Tune Orders and Disturbance 
Structures 
For real data there is no such thing as a correct model structure. However, 
different structures can result in different model quality. The only way to 
determine the model quality is to try different structures and then compare the 
resulting model properties. There are a few things to look for in these 
comparisons.

Fit Between Simulated and Measured Output
Keep the Model Output View open and look at the fit between the simulated 
output of the model and the measured output for the validation data. Formally, 
you could pick the model for which this number is the highest. In practice, it is 
better to be more pragmatic and also take into account the model complexity 
and whether the important features of the output response are captured.

Residual Analysis Test
If the model is a good model, the cross correlation function between residuals 
and input does not go significantly outside the confidence region. Otherwise 
there is something in the residuals that originates from the input and has not 
been properly taken care of by the model. A clear peak at lag k shows that the 
effect from input u(t-k) on y(t) is not correctly described. A rule of thumb is that 
a slowly varying cross-correlation function outside the confidence region is an 
indication of too few poles, while sharper peaks indicate too few zeros or wrong 
delays.

Pole-Zero Cancellations 
If the pole-zero plot (including confidence intervals) indicates pole-zero 
cancellations in the dynamics, this suggests that lower order models can be 
used. In particular, if it turns out that the orders of ARX models have to be 
increased to get a good fit, but that pole-zero cancellations are indicated, then 
the extra poles are just introduced to describe the noise. In this case, try the 
ARMAX, OE, or BJ model structures with an A or F polynomial of an order 
equal to that of the number of noncanceled poles.

What Model Structures Should Be Tested? 
It often takes just a few seconds to compute and evaluate a model in a certain 
structure, so you should have a generous attitude to performing the tests. 
However, experience shows that when the basic properties of the system’s 
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behavior have been picked up, it is not much use to fine-tune orders just to 
improve the fit by a fraction of a percent.

Many ARX models: There is a cheap way to test many ARX structures 
simultaneously. Enter in the Orders text field many combinations of orders, 
using the colon (:) notation. You can also click the Order Selection button. 
When you select Estimate, models for all combinations (which could be 
hundreds) are computed and their (prediction error) fit to validation data is 
shown on a plot. By clicking in this plot, you insert the best models with any 
chosen number of parameters into the Model Board, and evaluate them as 
desired.

Many state-space models: A similar feature is also available for black-box 
state-space models, estimated using n4sid. When a good order has been found, 
try the PEM estimation method, which often improves the accuracy.

ARMAX, OE, and BJ models: Once you have a feel for suitable delays and 
dynamics orders, it is often useful to try out ARMAX, OE, and/or BJ with these 
orders and test some different orders for the disturbance transfer functions (C 
and D). The OE structure is especially suitable for poorly damped systems.

To study the problem further, you could consult the extensive literature 
available on order and structure selection.

Multivariable Systems 
Systems with many input signals and/or many output signals are called 
multivariable. Such systems are often more challenging to model. In particular 
systems with several outputs could be difficult. A basic reason for the 
difficulties is that the couplings between several inputs and outputs lead to 
more complex models. The structures involved are richer, and more 
parameters will be required to obtain a good fit.

Available Models
The System Identification Toolbox as well as the GUI handle general, linear 
multivariable models. All models mentioned earlier are supported in the 
single-output, multiple-input case. For multiple outputs, ARX models and 
state-space models are covered. Multiple-output ARMAX and OE models are 
covered via state-space representations: ARMAX corresponds to estimating the 
K-matrix, while OE corresponds to fixing K to zero. (These are options in the 
GUI model order editor.)
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Generally speaking, it is preferable to work with state-space models in the 
multivariable case, because the model structure complexity is easier to deal 
with. It is essentially just a matter of choosing the model order.

Working with Subsets of the Input-Output Channels
In the process of identifying good models of a system, it is often useful to select 
subsets of the input and output channels. Partial models of the system’s 
behavior will then be constructed. It might not, for example, be clear whether 
all measured inputs have a significant influence on the outputs. You can most 
easily test that by removing an input channel from the data, building a model 
for how the outputs depend on the remaining input channels, and checking 
whether there is a significant deterioration in the fit of the model output from 
the measured one. See also the discussion under Step 3 above.

Generally speaking, the fit gets better when more inputs are included and often 
gets worse when more outputs are included. To understand the latter fact, you 
should realize that a model that has to explain the behavior of several outputs 
has a tougher job than one that must just account for a single output. If you 
have difficulties obtaining good models for a multioutput system, it might be 
wise to model one output at a time, to find out which are the difficult ones to 
handle. 

Models that are just to be used for simulations could very well be built up from 
single-output models, for one output at a time. However, models for prediction 
and control produce better results if constructed for all outputs simultaneously. 
This follows from the fact that knowing the set of all previous output channels 
gives a better basis for prediction than just knowing the past outputs in one 
channel. Also, for systems where the different outputs reflect similar 
dynamics, using several outputs simultaneously will help estimating the 
dynamics.

Some Practical Advice
Both the GUI and command-line operation will do useful bookkeeping for you, 
handling different channels. You could follow these steps:

1 Import data and create a data set with all input and output channels of 
interest. Preprocess this set in terms of detrending, etc., and then select a 
validation data set with all channels.



A Startup Identification Procedure

1-21

2 Then select a working data set with all channels, and estimate state-space 
models of different orders, using n4sid for these data. Examine the resulting 
model primarily using the Model Output view.

3 If it is difficult to get a good fit in all output channels or you would like to 
investigate how important the different input channels are, construct new 
data sets using subsets of the original input/output channels. Use the menu 
item Preprocess -> Select Channels for this. Don’t change the validation 
data. The GUI will keep track of the input and output channels. It does the 
right thing when evaluating the channel-restricted models using the 
validation data. It might also be appropriate to see if improvements in the 
fit are obtained for various model types, built for one output at a time.

• If you decide on a multioutput model, it is often easiest to use state-space 
models. Use n4sid as a primary tool and try pem when a good order has been 
found. 
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Reading More About System Identification
There is substantial literature on system identification. The following textbook 
deals with identification methods from a perspective like this toolbox’s, and 
also describes methods for physical modeling:

• Ljung, L., and T. Glad, Modeling of Dynamic Systems, Prentice Hall, 
Englewood Cliffs, N.J., 1994.

For more details about the algorithms and theories of identification,

• Ljung, L., System Identification – Theory for the User, Prentice Hall, Upper 
Saddle River, N.J., 2nd edition, 1999.

• Söderström, T., and P. Stoica, System Identification, Prentice Hall 
International, London, 1989.

For a treatment on frequency domain data in particular,

Pintelon, R., and J. Schoukens, System Identification. A Frequency Domain 
Approach, IEEE Press, New York, 2001.

For more about system and signals,

• Oppenheim, J., and A.S. Willsky, Signals and Systems, Prentice Hall, 
Englewood Cliffs, N.J., 1985.

The following textbook deals with the underlying numerical techniques for 
parameter estimation:

• Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, 
N.J., 1983.



 

2
The Graphical User 
Interface

The Big Picture (p. 2-2) A quick overview of the Ident GUI

Handling Data (p. 2-7) Importing, preprocessing, and viewing data

Estimating Models (p. 2-16) A discussion of direct and parametric 
identification methods 

Examining Models (p. 2-31) Examining, comparing, and validating identified 
models using frequency and transient responses, 
poles and zeros, and model outputs and residuals 

Additional GUI Topics (p. 2-39) Additional topics about the Ident GUI, including 
troubleshooting and customizing plots, 
reconfiguring the default layout, and limitations 
of the Ident GUI



2 The Graphical User Interface

2-2

The Big Picture
The System Identification Toolbox provides a graphical user interface (GUI). 
The GUI covers most of the toolbox functions and provides easy access to all 
variables that are created during a session. Start the session by typing

ident

in the MATLAB® Command Window.

The Main ident Window

The Model and Data Boards
System identification is about data and models and creating models from data. 
The main information and communication window, ident, is therefore 
dominated by two tables:
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• A table of available data sets, each represented by an icon

• A table of created models, each represented by an icon

These tables are referred to as the model board and the data board in this 
chapter. You enter data sets in the data board by

• Opening earlier saved sessions

• Importing them from the MATLAB workspace

• Creating them by detrending, filtering, transforming, and selecting subsets 
of another data set in the data board 

Imports are handled under the Import data menu while creation of new data 
sets is handled under the Preprocess menu. “Handling Data” on page 2-7 
deals with this in more detail. The GUI supports three kinds of data objects for 
estimation. Both objects and vector- or matrix-valued signals can be imported: 

• Time-domain input/output signals (in the iddata object format). These are 
marked by a white background color.

• Frequency-domain input/output signals (in the iddata object format). These 
are marked by a light green background color.

• Frequency functions (in the idfrd object format). These are estimates of the 
system’s frequency function (frequency response), obtained either by special 
data acquisition equipment (frequency analyzers) or as estimates from 
measured input-output data. These data sets are marked by a light brown 
background color.

You enter the models into the summary board by

• Opening earlier saved sessions

• Importing them from the MATLAB workspace

• Estimating them from data

Imports are handled under the Import models menu, while all the different 
estimation schemes are under the Estimate menu. More about this is in 
“Estimating Models” on page 2-16.

You can rearrange the data and model boards by dragging and dropping. More 
boards open automatically when necessary or when asked for (under the 
Options menu).
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Working Data
All data sets and models are created from the working data set. This is the data 
in the center of the ident window. To change the working data set, drag and 
drop any data set from the data board on the working data icon.

Views
Below the data and model boards are buttons for various views. These control 
what aspects of the data sets and models you would like to examine, and are 
described in more detail in “Handling Data” on page 2-7 and in “Examining 
Models” on page 2-31. To select a data set or a model so that its properties are 
displayed, click its icon. A selected object is marked by a thicker line in the icon. 
To clear it, click again. You can examine an arbitrary number of data/model 
objects simultaneously. To obtain more information about an object, 
double-click (or right-click or Ctrl+click) its icon. 

Validation Data
The two model views Model Output and Model Residuals illustrate model 
properties when applied to the validation data set. This is the set indicated in 
the box below these two views. To change the validation data, drag and drop 
any data set from the data board on the validation data icon.

It is good and common practice in identification to evaluate an estimated 
model’s properties using a fresh data set, that is, one that was not used for the 
estimation. It is thus good advice to let the validation data be different from the 
working data, but they should of course be compatible.

System Identification Workflow
Start by importing data (under the Data menu); examine the data set using the 
Data Views. You probably remove the means from the data and select subsets 
of data for estimation and validation purposes, using the items in the 
Preprocess menu. You then continue to estimate models, using the 
possibilities under the Estimate menu, perhaps first doing a quick start. You 
examine the obtained models with respect to your favorite aspects using 
various Model Views. The basic idea is that any selected view shows the 
properties of all selected models at any time. This function is live, so you can 
check models and views in and out at will. You select/deselect a model by 
clicking its icon.
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Inspired by the information you gain from the plots, you continue to try out 
different model structures (model orders) until you find a model you are 
satisfied with.

Session Management 
Diary: It is easy to forget what you have been doing. By double-clicking a 
data/model icon, you get a complete diary of how this object was created, along 
with other key information. At this point you can also add comments and 
change the name of the object and its color.

Layout: To have a good overview of the created models and data sets, it is good 
practice to try rearranging the icons by dragging and dropping. In this way 
models corresponding to a particular data set can be grouped together, etc. You 
can also open new boards (Options -> Extra model/data boards) to further 
rearrange the icons. These can be dragged across the screen between different 
windows. The extra boards are also equipped with notepads for your comments.

Sessions: The model and data boards with all models and data sets, together 
with their diaries, can be saved (under the File menu) at any point, and 
reloaded later. This is the counterpart of save/load workspace in the 
command-driven MATLAB. The four most recent sessions are listed under 
File.

Cleanliness: The boards will hold an arbitrary number of models and data sets 
(by creating clones of the board when necessary). However, you should clear 
(delete) models and data sets that are no longer of interest. Do that by dragging 
the object to the trash can icon. (Double-clicking the trash can opens it. You can 
retrieve its contents.) Empty the trash can if you run into memory problems.

Warnings: Several messages from the underlying computations can show up 
in warning dialog boxes. You can turn off these warnings using an item in the 
Options menu.

Window Culture: Dialog box and plot windows are best managed by the GUI’s 
close function (item under the File menu). Alternatively, select Close or 
select/clear the corresponding View box. It is generally not recommended to 
minimize the windows, but to use the GUI’s handling and window 
management system instead.
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Workspace Variables
The models and data sets created within the GUI are normally not available in 
the MATLAB workspace. Indeed, the variables used during the system 
identification sessions do not automatically end up in the workspace. You can, 
however, export the variables to the workspace at any time, by dragging and 
dropping the data or model icons to the To Workspace icon. The corresponding 
workspace variables have the same name as the data or model you export. You 
can work with the variables in the workspace by using any MATLAB 
commands, and then you can import the modified versions back into the GUI. 
Note that models and data are exported as the toolbox objects idmodel, idfrd, 
and iddata. To learn how to extract information and work with these objects, 
see “Data Representation” on page 3-19 and “Model Conversion” on page 4-11.

The GUI’s names of data sets and models are suggested by default procedures. 
Normally, you can enter any other name of your choice at the time of creation 
of the variable. You can change the names (after double-clicking the icon) at 
any time. Unlike the workspace situation, two GUI objects can carry the same 
name (i.e., the same string in their icons).

Context-Sensitive Help
The main ident window and the plot windows contain help topics under the 
Help menu. In addition, every dialog box has a Help button that provides help 
on that specific GUI.
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Handling Data

Data Representation 
In the System Identification Toolbox, signals and observed data are 
represented as column vectors, for example:

The entry in row number k, i.e., u(k), will then be the signal’s value at sampling 
instant number k. It is generally assumed in the toolbox that data is sampled 
at equidistant sampling times, and the sampling interval T is supplied as a 
specific argument.

For frequency-domain data, u(k) is interpreted as the Fourier transform of the 
input at frequency w(k), where the frequency vector w is defined along with the 
input.

The input to a system is generally denoted by the letter u and the output by y. 
If the system has several input channels, the input data is represented by a 
matrix, where the columns are the input signals in the different channels.

The same holds for systems with several output channels.

The observed input-output data record is represented in the System 
Identification Toolbox by the iddata object that is created from the input and 
output signals by

Data = iddata(y,u,Ts)

where Ts is the sampling time. For frequency-domain data, the object is defined 
as

Data = iddata(y,u,Ts,'Domain','Frequency','Freq',w)

where w is the vector of frequencies.

u

u 1( )
u 2( )

…
…

u N( )

=

u u1 u2 … um=
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The iddata object can also be created from the input and output signals when 
the data is inserted into the GUI.

Another data representation that can be used for model estimation is frequency 
responses (frequency functions). This consists of the frequency response from 
input to output G(w) (which the transfer function evaluated on the unit circle 
or the imaginary axis). The frequency function G(w) is a complex number, 
whose absolute value describes how a sinusoid of frequency w is amplified by 
the system, and whose argument (phase) describes how the same signal is 
shifted (phase-lagged) by the system. Frequency response data is contained in 
the idfrd object:

Datfr = idfrd(G,w,Ts)

idfrd objects can also be created from the basic signals when they are imported 
into the GUI.

Getting Data into the GUI
To bring data into the GUI, select the Import Data menu in the main GUI 
window. This gives you three choices:

• Time-domain data

• Frequency-domain data (also covers frequency response data)

• Data object

Depending on what you choose, slightly different dialog box windows open.

For input/output data, the information about a data set that should be supplied 
to the GUI is as follows:

• Input and output signals

• Name you give to the data set 

• Sampling interval Ts (Ts = 0 denotes time continuous data, which then must 
be frequency domain.)

For frequency-domain data, you also have to supply the

• Frequency vector

In addition to this mandatory information, you can add further properties that 
will help in the bookkeeping:
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• Starting time for the sampling (For frequency-domain data, enter instead 
the frequency unit, Hz or rad/s.)

• Input and output channel names

• Input and output channel units

• Periodicity and intersample behavior of the input

• Data notes: These are notes for your own information and bookkeeping that 
will follow the data and all models created from it.

Note that the sampling interval and the input intersample properties are 
relevant also for frequency-domain data, because they determine how to 
interpret the information in the data.

In the case of frequency-response data, you have to enter

• The response function, either as a vector of complex values or as amplitude 
and phase

• The corresponding vector of frequencies

• The underlying sampling interval Ts. Use Ts = 0 if the response corresponds 
to a continuous time system.

If the system has nu inputs and ny outputs, and the response is given at nf 
frequencies, the response function is an ny-by-nu-by-nf 3-D array. In this case 
also, you can supply bookkeeping information as above.

As you select the Import Data menu and choose the relevant item, a dialog box 
opens where you can enter the information. 
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Dialog box for Importing Data into the GUI

For the time-domain data case, the fields are as follows:

Input and Output: Enter the variable names of the input and output 
respectively. These should be variables in your MATLAB workspace, so you 
might have to load some disk files first.

Actually, you can enter any MATLAB expressions in these fields, and they are 
evaluated to compute the input and the output before the data is imported into 
the GUI.

Data name: Enter the name of the data set to be used by the GUI. You can 
change this name later on.
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Starting time and Sampling interval: Fill these out for correct time and 
frequency scales in the plots.

Clicking More expands the dialog box and provides additional options:

Channel names: Enter strings for the different input and output channel 
names. Separate the strings by commas. The number of names must be equal 
to the number of channels. If these entries are not filled out, default names, for 
example, y1, y2, ..., u1, u2, ..., are used.

Channel units: Enter, in analogous format, the units in which the 
measurements are made. These will follow all models built from data, but are 
used only for plot information.

Period: If the input is periodic, enter the period length. Inf means a 
nonperiodic input, which is the default.

Intersample: Choose the intersample behavior of the input as ZOH (zero-order 
hold, i.e., the input signal is piecewise constant between the samples) or FOH 
(first-order hold, i.e., the input signal is piecewise linear between the samples) 
or BL (band-limited, i.e., the continuous-time input signal has no power above 
the Nyquist frequency). ZOH is the default.

The box at the bottom is for Notes, where you can enter any text you want to 
accompany the data for bookkeeping purposes.

Finally, select Import to insert the data into the GUI. When no more data sets 
are to be inserted, select Close to close the dialog box. Selecting Reset will 
empty all the fields of the box.

The procedure just described creates an iddata object, with all its properties 
(or correspondingly an idfrd object, in the frequency-response data case). If 
you already have an iddata or idfrd object available in the workspace, you can 
import that directly by selecting the item Data Object in the Import Data 
menu.

Taking a Look at the Data
The first thing to do after inserting the data set into the data board is to 
examine it. Selecting Data View>Time plot shows a plot of the input and 
output signals for the data sets that are selected. You select/clear the data sets 
by clicking them. For multivariable data, you can choose the different 
combinations of input and output signals under the Channel menu in the plot 
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window. Using the zoom function (drawing rectangles with the left mouse 
button down), you can examine different portions of the data in more detail.

To examine the frequency contents of the data, select Data spectra under Data 
Views in the ident window. The function is analogous to Time plot, but the 
signals’ spectra are shown instead. By default the periodograms of the data are 
shown, i.e., the absolute squares of the Fourier transforms of the data. You can 
change the plot to any chosen frequency range and a number of different ways 
of estimating spectra, using the Options menu in the spectra window.

The purpose of examining the data in these ways is to find out if there are 
portions of the data that are not suitable for identification, if the information 
contents of the data are suitable in the interesting frequency regions, and if the 
data has to be preprocessed in some way before it can be used for estimation.

Another way of examining data is Frequency Function under Data Views in 
the ident window. For a frequency response data set this shows the amplitude 
and phase of the frequency function. For time- or frequency-domain 
input/output data, this view shows the empirical transfer function estimate 
(etfe) based on the data.

Preprocessing Data
The Preprocess menu has a number of methods to modify and transform the 
data sets on the data board. The commands are applied to the currently 
selected working data. The actual menu of choices depends on this data set. Not 
all choices are applicable to all kinds of data sets.

Detrending
Detrending the data involves removing the mean values or linear trends from 
the signals (the means and the linear trends are computed and removed from 
each signal individually). You access this function under the Preprocess menu 
by selecting Remove Means or Remove Trends. More advanced detrending, 
such as removing piecewise linear trends or seasonal variations, cannot be 
accessed within the GUI. We generally recommend that you remove at least 
the mean values of the data before the estimation phase. There are, however, 
situations when it is not advisable to remove the sample means. It could be, for 
example, that the physical levels are built into the underlying model, or that 
integrations in the system must be handled with the right level of the input 
being integrated. 
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Selecting Data Ranges
It is often the case that the whole data record is not suitable for identification, 
because of various undesired features (missing or bad data, outbursts of 
disturbances, level changes, etc.), so that only portions of the data can be used. 
In any case, it is advisable to select one portion of the measured data for 
estimation purposes and another portion for validation purposes. Selecting 
Preprocess > Select Range opens a dialog box that facilitates the selection of 
different data portions. You can type in the ranges or mark them by drawing 
rectangles with the mouse button down.

For multivariable data it is often advantageous to start by working with just 
some of the input and output signals. Selecting Preprocess > Select Channels 
allows you to select subsets of the inputs and outputs. This is done in such a 
way that the input/output numbering and names remain consistent when you 
evaluate data and model properties, for models covering different subsets of the 
data. 

Prefiltering
By filtering the input and output signals through a linear filter (the same filter 
for all signals) you can, for example, remove drift and high-frequency 
disturbances in the data, which could have a bad influence on the model. You 
do this by selecting Preprocess > Filter in the main ident window. The dialog 
box is similar to the one where you select data ranges in the time domain. You 
mark with a rectangle in the spectral plots the intended passband or stop band 
of the filter, you select a button to check whether the filtering has the desired 
effect, and then you insert the filtered data into the GUI’s data board.

Prefiltering is a good way of removing high-frequency noise in the data, and is 
also a good alternative to detrending (by cutting out low frequencies from the 
passband). Depending on the intended model use, you can also make sure that 
the model concentrates on the important frequency ranges. For a model that 
will be used for control design, for example, the frequency band around the 
intended closed-loop bandwidth is of special importance. 

If you intend to use the data to build models both of the system dynamics and 
the disturbance properties, we recommend that you do the filtering at the 
estimation phase. Select Estimate > Parametric Models, and then select the 
estimation Focus to be Filter. This opens the same filter dialog box as above. 
The prefiltering, however, applies only for estimating the dynamics from input 
to output. The disturbance model is determined from the original data.
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Resampling
If the data turns out to be sampled too fast, it can be decimated; i.e., every kth 
value is picked, after proper prefiltering (antialias filtering). This is obtained 
using Preprocess > Resample.

You can also resample at a faster sampling rate by interpolation, using the 
same command, and giving a resampling factor of less than 1.

Transform Data
Preprocess > Transform Data opens a dialog box that allows you to transform 
between time- and frequency-domain input/output data and also to form 
frequency-response data sets from input/output data.

Quickstart
Preprocess > Quickstart performs the following sequence of actions: It opens 
the Time plot Data view, removes the means from the signals, and splits this 
detrended data into two halves. The first one is made working data and the 
second one becomes validation data. All three created data sets are inserted 
into the data board.

Multiexperiment Data
The System Identification Toolbox allows the handling of data sets that contain 
several different experiments. Both estimation and validation can be applied 
to such data sets. This is quite useful to deal with experiments that have been 
conducted at different occasions but describe the same system. It is also useful 
to be able to keep together pieces of data that have been obtained by cutting out 
informative pieces from a long data set. Multiexperiment data can be imported 
and used in the GUI like any iddata object. Selecting a specific part of a 
multiexperiment data set is done using Preprocess > Select Experiment. To 
merge several data sets in the data board (obtained, for example, by cutting out 
portions from other data sets) use Preprocess > Merge Experiment.

Checklist for Data Handling
• Insert data into the GUI’s data board.

• Plot the data and examine it carefully.

• Typically detrend the data by removing mean values.
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• Select portions of the data for estimation and for validation. Drag and drop 
these data sets to the corresponding boxes in the GUI. 

Simulating Data
The GUI is intended primarily for working with real data sets, and does not 
itself provide functions for simulating synthetic data. That has to be done in 
command mode, and you can use your favorite procedure in Simulink, the 
Signal Processing Toolbox, or any other toolbox for simulation, and then insert 
the simulated data into the GUI as described above. 

The System Identification Toolbox also has several commands for simulation. 
For example, see the reference pages for idinput and sim for details. 

The following example shows how the ARMAX model

is simulated with a random binary input u and Gaussian noise e.

% Create an ARMAX model
model1 = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
u = idinput(400,'rbs',[0 0.3]); 
y = sim(model1,u,'noise');

The input, u, and the output, y, can now be imported into the GUI as data, and 
the various estimation routines can be applied to them. If you also import the 
simulation model model1 into the GUI, its properties can be compared to those 
of the different estimated models.

To simulate a continuous-time state-space model 

with the same input, and a sampling interval of 0.1 second, do the following in 
the System Identification Toolbox:

y t( ) 1.5y t 1–( )– 0.7y t 2–( )+ =
u t 1–( ) 0.5u t 2–( ) e t( ) e t 1–( )– 0.2e t 1–( )+ + +

x· Ax Bu Ke+ +=
y Cx e+=
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A = [-1 1;-0.5 0]; B = [1; 0.5]; C = [1 0]; D = 0; K = [0.5;0.5];
Model2 = idss(A,B,C,D,K,'Ts', 0) % Ts = 0 means continuous time
Data = iddata([],u);
Data.Ts = 0.1
y=sim(Model2,Data,'noise'); 

Estimating Models

The Basics
Estimating models from data is the central activity in the System 
Identification Toolbox. It is also the one that offers the most possibilities and 
thus is the most demanding one for the user. 

All estimation routines are accessed from the Estimate menu in the ident 
window. The models are always estimated using the data set that is currently 
in the Working Data box.

You can distinguish between two different types of estimation methods:

• Direct estimation of the impulse or the frequency response of the system. 
These methods are often called nonparametric estimation methods, and do 
not impose any structure assumptions about the system other than that it is 
linear.

• Parametric methods. A specific model structure is assumed, and the 
parameters in this structure are estimated using data. This opens up a large 
variety of possibilities, corresponding to the different ways of describing the 
system. The most important model structures include the state-space 
description, as well as several variants of difference equation descriptions.

Direct Estimation of the Impulse Response 
A linear system can be described by the impulse response , with the property 
that

The name derives from the fact that if the input u(t) is an impulse, i.e., u(t)=1 
when t=0 and 0 when t>0, then the output y(t) will be . For a 
multivariable system, the impulse response  will be an ny-by-nu matrix 

gk

y t( ) gku t k–( )

k 1=

∞

∑=

y t( ) gt=
gk
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where ny is the number of outputs and nu is the number of inputs. Its i-j 
element thus describes the behavior of the ith output after an impulse in the 
jth input.

Choosing menu item Estimate -> Correlation Model opens a dialog box that 
lets you directly estimate the impulse response coefficients from the 
input/output data using so called correlation analysis. The actual method is 
described under the command impulse in Chapter 4, “Function Reference.” For 
a quick action, you can also just type the letter c in the ident window. This is 
the hot key for correlation analysis.

The resulting impulse response estimate is placed in the model board, under 
the default name imp. (You can change the name by double-clicking the model 
icon and then typing in the desired name in the dialog box that opens.) 

The best way to examine the result is to select Transient Response under 
Model Views. This gives a graph of the estimated response. This view offers a 
choice between displaying the impulse or the step response. For a 
multivariable system, the different channels, i.e., the responses from a certain 
input to a certain output, are selected under the Channel menu.

The number of lags for which the impulse response is estimated, i.e., the length 
of the estimated response, is determined as one of the options in the Transient 
Response view.

Direct Estimation of the Frequency Response
The frequency response of a linear system is the Fourier transform of its 
impulse response. This description of the system gives considerable 
engineering insight into its properties. The relation between input and output 
is often written

y(t)=G(z)u(t)+v(t)

where G is the transfer function and v is the additive disturbance. The function

as a function of (angular) frequency ω is then the frequency response or 
frequency function. T is the sampling interval. If you need more details on the 
different interpretations of the frequency response, see “The System 
Identification Problem” on page 3-9 or any textbook on linear systems. 

G eiωT( )
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You can estimate the system’s frequency response directly using spectral 
analysis by selecting Estimate > Spectral Model and then clicking the 
Estimate button in the dialog box that opens. The result is placed on the model 
board under the default name spd. The best way to examine it is to plot it using 
Frequency Response under Model Views. This view offers a number of 
different options on how to graph the curves. You can also select the 
frequencies for which to estimate the response by specifying the number of 
frequencies and the spacing (linear or logarithmic) in the Spectral Model 
dialog box. The spectral analysis command also estimates the spectrum of the 
additive disturbance v(t) in the system description. You can examine this 
estimated disturbance spectrum using Model Views > Noise Spectrum.

The spectral analysis estimate is stored as an idfrd object. If you need to work 
further with the estimates, you can export the model to the MATLAB 
workspace and retrieve the responses directly from this object or by using the 
nyquist or bode command. See idfrd, bode, and nyquist in Chapter 4, 
“Function Reference,” for more information. (Export a model by dragging and 
dropping it over the To Workspace icon.)

A few options that affect the spectral analysis estimate can be set in the dialog 
box. The most important choice is the frequency resolution. This is a number, 
M (the size of the lag window), that affects the frequency resolution of the 
estimates. Essentially, the frequency resolution is about 2 /M 
radians/(sampling interval). The choice of M is a tradeoff between frequency 
resolution and variance (fluctuations). A large value of M gives good resolution 
but fluctuating and less reliable estimates. The default choice of M is good for 
systems that do not have very sharp resonances and might have to be adjusted 
for more resonant systems.

The options also offer a choice between the Blackman-Tukey windowing 
method spa (which is the default); a variant with frequency dependent 
resolution, spafdr; and a method based on smoothing direct Fourier 
transforms, etfe. etfe has an advantage for highly resonant systems in that it 
is more efficient for large values of M. It however has the drawbacks that it 
requires linearly spaced frequency values, does not estimate the disturbance 
spectrum, and does not provide confidence intervals. The actual methods are 
described in more detail in Chapter 4, “Function Reference,” under spa, 
spafdr, and etfe. To obtain the spectral analysis model for the current settings 
of the options, you can just type the hot key s in the ident window. 

π
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Estimation of Simple Process Model
The System Identification Toolbox allows you to estimate simple 
continuous-time process models characterizing the static gain, dominating 
time constants, and possible time delays (dead time). They are variants of the 
transfer function model structure

where K is the static gain, Tp1 is the time constant, and Td is the delay.

To estimate models of this kind, select Estimate > Process Models in the ident 
window. This opens a dialog box as shown below.

Dialog box for Estimating Process Models

G s( ) K
1 sTp1+
----------------------e

sTd–
=
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In this dialog box you enter how many time constants (poles) to estimate and 
whether to include a time-delay term and an extra zero in the numerator of the 
transfer function. You can also enforce an integration for self-regulating 
processes. Moreover, there is a choice to force all time constants to be real or to 
allow underdamped modes (complex poles).

The dialog box can handle an arbitrary number of inputs, but only one output 
signal.

Some Further Estimation Options
The dialog box also has four menus that offer further options:

Disturbance Model allows you to include a first- or second-order model for the 
additive disturbances to the output.

Focus allows you to choose between a frequency weighting that concentrates 
on the model’s prediction or simulation performance. Another alternative is 
prefiltering, which was described in “Prefiltering” on page 2-13. 

The InitialState menu has options to estimate the initial state or to fix it to 
zero. The value Auto makes an automatic choice among these options. 

The Covariance menu allows the choice between Estimate and None. 
Normally, the covariance of the model is estimated, so that various uncertainty 
measures can be displayed in the plots. 

Initial Parameter Values and Parameter Bounds
If no prior knowledge is available about the parameters, a startup routine is 
invoked to come up with initial parameter estimates. These are further 
iterated upon to give the best possible model fit to the data. The text AUTO is 
used to indicate that no initial guess is provided and an automatic process is 
invoked to estimate the initial values. If no qualified guess is available, this is 
usually a better alternative than entering an ad hoc value. However, if the 
estimation process gives parameter values that seem unreasonable, it might be 
worthwhile to try out various initial guesses and upper and/or lower limits of 
the parameters. Note that if you estimate a time delay, you must always 
provide an upper limit for the delay in order to secure efficient algorithms. The 
default value of this upper bound is 30 sampling intervals.
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Iteration Information
The dialog box also provides information about the progress of the iterative 
optimization of the fit between the data and the model. The iteration number, 
the current fit information, and the improvement in fit (in percent) compared 
to the previous iteration are shown. You can also abort the iterations and save 
the current model, after the current iteration is finished. You access 
parameters that affect the minimization process by clicking Options.

Estimation of Parametric Models 
The System Identification Toolbox supports a wide range of model structures 
for linear systems. Except for process models, they are all accessed by 
Estimate > Parametric Models in the ident window. This opens the 
Parametric Models dialog box, which contains the basic dialog box for all 
parametric estimation, as shown below.

Dialog box for Estimating Parametric Models

The basic function of this box is as follows:
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As you select Estimate, a model is estimated from the working data. The 
structure of this model is defined by the Structure menu together with the 
Orders edit box. It is given a name, which is written in the Name edit box.

The GUI will always suggest a default model name in the Name box, but you 
can change it to any string before clicking Estimate. (If you intend to export 
the model later, avoid spaces in the name.)

The interpretation of the model structure information (typically integers) in 
the Orders box depends on the structure selected in the menu. This covers, 
typically, six choices:

• ARX models 

• ARMAX model

• Output-error (OE) models

• Box-Jenkins (BJ) models 

• State-space models 

• Model structure defined by initial model (user-defined structures)

You can fill out the Orders box yourself at any time, but for assistance you can 
select Order Editor. This opens another dialog box, depending on the chosen 
structure, in which you can enter the desired model order and structure 
information in a simpler fashion.

You can also enter the name of a MATLAB workspace variable in the Orders 
edit box. This variable should have a value that is consistent with the 
necessary orders for the chosen structure.

Note  For the state-space structure and the ARX structure, you can enter 
several orders and combinations of orders. Then all corresponding models are 
compared and displayed in a special dialog box for you to select suitable ones. 
This could be a useful tool to select good model orders. This option is described 
in more detail later in this section. When it is available, an Order selection 
button is visible.

Estimation Method 
A common method of estimating the parameters is the prediction error 
approach, where the parameters of the model are chosen so that the difference 
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between the model’s predicted output and the measured output is minimized. 
This method is available for all model structures. Except for the ARX case, the 
estimation involves an iterative numerical search for the best fit. 

Some information from this search is given online in the dialog box. By clicking 
Iteration options, you get access to a number of options that govern the search 
process. (See “Algorithm Properties” on page 4-22.)

For some model structures (the ARX model, and black-box state-space models) 
methods based on correlation are also available — Instrumental Variable (IV) 
and Subspace (N4SID) methods. The choice of methods is made in the 
Parametric Models dialog box.

The dialog box also has three menus that offer further options. Focus allows 
you to choose between a frequency weighting that concentrates on the model’s 
prediction or simulation performance. Another alternative is prefiltering, 
which was described in “Prefiltering” on page 2-13. The InitialState menu has 
options to estimate the initial state or to fix it to zero. The value Auto makes 
an automatic choice among these options. Finally, the Covariance menu 
allows the choice between Estimate and None. Normally the covariance of the 
model is estimated, so that various uncertainty measures can be displayed in 
the plots. However, for high-order state-space models estimated by N4SID, or 
large multivariable ARX models, the computation of the covariance matrix can 
take quite a long time. Choosing Covariance: None greatly reduces the 
computation time.

Resulting Models 
The estimated model is inserted into the GUI’s model board. You can then 
examine its various properties and compare them with other models’ properties 
using the Model Views plots. More about that is in “Examining Models” on 
page 2-31. 

To take a look at the model itself, double-click the model’s icon (or right-click 
or Ctrl+click). The Data/Model Info window that opens gives you information 
about how the model was estimated. You can also select the Present button, 
which lists the model and its parameters with estimated standard deviations 
in the MATLAB Command Window. 

If you need to work further with the model, you can export it by dragging and 
dropping it over the To Workspace icon, and then apply any MATLAB and 
toolbox commands to it. (See, in particular, the commands ssdata, tfdata, d2c, 
and get in Chapter 4, “Function Reference.”)
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Which Structure and Method to Use 
There is no simple way to find the best model structure; in fact, for real data, 
there is no such thing as a best structure. Some routes to find good and 
acceptable models are described in “A Startup Identification Procedure” on 
page 1-15. It is best to be generous at this point. It often takes just a few 
seconds to estimate a model, and, using the different validation tools described 
in the next section, you can quickly find out if the new model is any better than 
the ones you had before. There is often a significant amount of work behind the 
data collection, and spending a few extra minutes trying out several different 
structures is usually worthwhile. 

ARX Models

Structure 
The most used model structure is the simple linear difference equation

which relates the current output y(t) to a finite number of past outputs y(t-k) 
and inputs u(t-k).

The structure is thus entirely defined by the three integers na, nb, and nk. na 
is equal to the number of poles and nb 1 is the number of zeros, while nk is the 
pure time delay (the dead time) in the system. For a system under 
sampled-data control, typically nk is equal to 1 if there is no dead time.

For multiinput systems, nb and nk are row vectors, where the ith element gives 
the order/delay associated with the ith input.

Entering the Order Parameters 
The orders na, nb, and nk can either be directly entered into the Orders edit 
box in the Parametric Models window, or selected using the menus in the 
Order Editor.

Estimating Many Models Simultaneously 
By entering any or all of the structure parameters as vectors, using the 
MATLAB colon notation, such as na=1:10, you define many different 
structures that correspond to all combinations of orders. When you select 

y t( ) a1y t 1–( ) … anay t na–( ) =+ + +

b1u t nk–( ) … bnbu t nk– nb– 1+( )+ +
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Estimate, models corresponding to all these structures are computed. A special 
plot window then opens that shows the fit of these models to validation data. 
By clicking in this plot, you can enter any models of your choice into the model 
board. 

Multiinput models: For multiinput models you can enter each of the input 
orders and delays as a vector. The number of models resulting from all 
combinations of orders and delays can, however, be very large. As an 
alternative, you can enter one vector (such as nb=1:10) for all inputs and one 
vector for all delays. Then only models that have the same orders and delays 
from all inputs are computed.

Estimation Methods
There are two methods to estimate the coefficients a and b in the ARX model 
structure:

Least Squares: Minimizes the sum of squares of the right side minus the left 
side of the expression above, with respect to a and b. Select ARX in the Method 
box.

Instrumental Variables: Determines a and b so that the error between the 
right and left sides becomes uncorrelated with certain linear combinations of 
the inputs. Select IV in the Method box.

The methods are described in more detail in the reference pages for arx and 
iv4.

Multioutput Models 
For a multioutput ARX structure with ny outputs and nu inputs, the difference 
equation above is still valid. The only change is that the coefficients a are 
ny-by-ny matrices and the coefficients b are ny-by-nu matrices. 

The orders [NA NB NK] define the model structure as follows:

NA: an ny-by-ny matrix whose i-jth entry is the order of the polynomial (in the 
delay operator) that relates the jth output to the ith output

NB: an ny-by-nu matrix whose i-jth entry is the order of the polynomial that 
relates the jth input to the ith output 

NK: an ny-by-nu matrix whose i-jth entry is the delay from the jth input to the 
ith output

The Order Editor dialog box allows the choices 
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NA = na∗ones(ny,ny)
NB = nb∗ones(ny,nu)
NK = nk∗ones(ny,nu)

where na, nb, and nk are chosen by the menus.

For custom order choices, construct a matrix [NA NB NK] in the MATLAB 
Command Window and enter the name of this matrix in the Orders edit box in 
the Parametric Models window.

Note that the possibility to estimate many models simultaneously is not 
available for multioutput ARX models.

See “Defining Model Structures” on page 3-39 for more information on 
multioutput ARX models. 

ARMAX, Output-Error (OE), and Box-Jenkins (BJ) 
Models
There are several elaborations of the basic ARX model, where different 
disturbance models are introduced. These include well-known model types, 
such as ARMAX, output-error (OE), and Box-Jenkins (BJ).

The General Structure
A general input-output linear model for a single-output system with input u 
and output y can be written

Here ui denotes input #i, and A, Bi, C, D, and Fi, are polynomials in the shift 
operator (z or q). (Don’t be intimidated by this: It is just a compact way of 
writing difference equations; see below.)

You define the general structure by giving the time delays nk and the orders of 
these polynomials (i.e., the number of poles and zeros of the dynamic model 
from u to y, as well as of the disturbance model from e to y).

Special Cases 
Most often the choices are confined to one of the following special cases:ARX:   

 

A q( )y t( ) Bi q( ) Fi q( ) ]⁄ ui t nki–( ) C q( ) D q( ) ]⁄ e t( )[+[

i 1=

nu

∑=

A q( )y t( ) B q( )u t nk–( ) e t( )+=
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ARMAX:  

OE:     (output-error)

BJ:     (Box-Jenkins)

The shift operator polynomials are just compact ways of writing difference 
equations. For example, the ARMAX model in longhand would be

Note that A(q) corresponds to poles that are common to the dynamic model and 
the disturbance model (useful if disturbances enter the system close to the 
input). Likewise  determines the poles that are unique for the dynamics 
from input # i, and D(q) the poles that are unique for the disturbances. 

The reason for introducing all these model variants is to provide for flexibility 
in the disturbance description and to allow for common or different poles 
(dynamics) for the different inputs.

Entering the Model Structure 
Use the Structure menu in the Parametric Models dialog box to choose 
among the ARX, ARMAX, output-error, and Box-Jenkins structures. Note that 
if the working data set has several outputs, only the first choice is available. 
For time series (data with no input signal) only AR and ARMA are available 
among these choices. These are the time-series counterparts of ARX and 
ARMAX.

You select the orders of the polynomials using the menus in the Order Editor 
dialog box, or by directly entering them in the Orders edit box in the 
Parametric Models window. When the order editor is open, the default orders, 
entered as you change the model structure, are based on previously used 
orders.

Estimation Method 
You estimate the coefficients of the polynomials using a prediction 
error/maximum likelihood method, by minimizing the size of the error term e 
in the expression above. Several options govern the minimization procedure. 
You access these by selecting Iteration Options in the Parametric Models 
window.

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

y t( ) B q( ) F q( )⁄[ ]u t nk–( ) e t( )+=

y t( ) B q( ) F q( )⁄[ ]u t nk–( ) C q( ) D q( )⁄[ ]e t( )+=

y t( ) a1y t 1–( ) … anay t na–( )+ + + b1u t nk–( ) …+ +=

bnbu t nk– nb– 1+( ) e t( ) c1e t 1–( ) … cnce t nc–( )+ + + +

Fi q( )
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The algorithms are further described in Chapter 4, “Function Reference,” 
under armax, Algorithm Properties, bj, oe, and pem. See also “Parametric 
Model Estimation” on page 3-28 and “Defining Model Structures” on page 3-39.

Note  These model structures are available only for the scalar output case. 
For multioutput models, the state-space structures offer the same flexibility. 
Also note that it is not possible to estimate many different structures 
simultaneously for input-output models.

State-Space Models

The Model Structure 
The basic state-space model in innovations form can be written

x(t+1) = A x(t) + B u(t) + K e(t) 

y(t) = C x(t) + D u(t) + e(t) 

The System Identification Toolbox supports two kinds of parameterizations of 
state-space models: black-box, free parameterizations and parameterizations 
custom-made for the application. The latter are discussed in “User-Defined 
Model Structures” on page 2-30. First the black-box case is described.

Entering Black-Box State-Space Model Structures 
The most important structure index is the model order, i.e., the dimension of 
the state vector x.

Use the menu in the Order Editor to choose the model order, or enter it 
directly into the Orders edit box in the Parametric Models window. You can 
further affect the chosen model structure:

• Fixing K to zero gives an output-error method; i.e., the difference between 
the model’s simulated output and the measured one is minimized. Formally, 
this corresponds to an assumption that the output disturbance is white 
noise. This is done by the menu under Disturbance Model.

• The delays from the input can be chosen independently for each input. It will 
be a row vector nk, with nu entries. When the delay is larger than or equal to 
one, the D-matrix in the discrete-time model is fixed to zero. For physical 
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systems without a pure time delay that are driven by piecewise constant 
inputs, nk = 1 is a natural assumption. This is also the default. You can set 
the delays nk either in the order editor or directly in the Orders box as 
numbers in square brackets.

• The initial state X0 can either be estimated, set to zero, or backcast. This is 
handled by the Initial State menu.

Estimating Many Models Simultaneously 
If you enter a vector for the model order, using the MATLAB colon notation 
(such as 1:10), all indicated orders are computed using a preliminary method. 
You can then enter models of different orders into the model board by clicking 
in a special graph that contains information about the models. 

Estimation Methods 
There are two basic methods for the estimation.

pem: Standard prediction error/maximum likelihood method, based on iterative 
minimization of a criterion. The iterations are started up at parameter values 
that are computed from n4sid. The parameterization of the matrices A, B, C, 
D, and K is free. The search for minimum is controlled by a number of options. 
These are accessed from the Option button in the Iteration Control window.

n4sid: Subspace-based method that does not use iterative search. The quality 
of the resulting estimates can significantly depend on options N4Weight and 
N4Horizon. You choose these options in the Order Editor dialog box. If you 
enter N4Horizon with several rows, the models corresponding to the horizons 
in each row are examined separately using the working data. The best model 
in terms of prediction (or simulation, if K = 0) performance is selected. A figure 
is shown that illustrates the fit as a function of the horizon. If you leave the 
N4Horizon box empty, a default choice is made.

Note  When you use Order Selection, the default N4Horizons will be chosen 
according to the highest order you asked for. The chosen values will be 
displayed in the Order Editor. If you reestimate the model with the same order 
later, other default N4Horizons may be used, resulting in a slightly different 
model. 

See the reference pages for n4sid and pem for more information.
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User-Defined Model Structures

State-Space Structures 
The System Identification Toolbox supports user-defined linear state-space 
models of arbitrary structure. Using the idss model structure, known and 
unknown parameters in the A, B, C, D, K, and X0 matrices can be easily defined 
both for discrete- and continuous-time models. The idgrey object allows you to 
use a completely arbitrary grey box structure, defined by an M-file. The model 
object properties can be easily manipulated. See the reference pages for idss 
and idgrey and “Structured State-Space Models with Free Parameters: the 
idss Model” on page 3-48.

To use these structures in conjunction with the GUI, just define the 
appropriate structure in the MATLAB Command Window. Then use the 
Structure menu to select By Initial Model, enter the variable name of the 
structure in the Initial Model edit box in the Parametric Models window, and 
select Estimate.

Any Model Structure 
Arbitrary model structures can be defined using the System Identification 
Toolbox model objects:

• idpoly: Creates input-output structures for single-output models

• idss: Creates linear state-space models with arbitrary free parameters 

• idgrey: Creates completely arbitrary parameterizations of linear systems

• idproc: Creates simple process models

• idarx: Creates multivariable ARX structures

To work with any such defined or estimated model in the GUI, use the 
Structure menu to select By Initial Model, enter the variable name of the 
structure in the Initial Model edit box in the Parametric Models window, and 
select Estimate. Then the parameters of the model structure are adjusted to 
the chosen working data set. The method is a standard prediction 
error/maximum likelihood approach that iteratively searches for the minimum 
of a criterion. You access the options that govern this search by the Iteration 
Options button in the Parametric Models window.

The name of the initial model must be a variable either in the workspace or in 
the model board. In the latter case you can just drag and drop it over the 
Orders/Initial model box.
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Examining Models
Estimating a model is just a first step. Now you must examine it, compare it 
with other models, and test it with new data sets. You do this primarily using 
the six Model Views functions at the bottom of the main ident window:

• Frequency response

• Transient response

• Poles and zeros

• Noise spectrum

• Model output

• Model residuals 

In addition, you can double-click the model’s icon to get Text Information 
about the model. Finally, you can export the model to the MATLAB workspace 
and use any commands for further analysis and model use.

Views and Models 
If a certain View window is open (selected), then all models in the model 
summary board that are selected will be represented in the window. You can 
click in and out of the curves in the View window by selecting and clearing the 
models in an online fashion. You select and clear a model by clicking its icon. A 
selected model is marked with a thicker line in its icon. 

On color screens, the curves are color coded along with the model icons in the 
model board. Before printing a plot it might be a good idea to differentiate the 
line styles (menu item under Style). This could also be helpful on black and 
white screens.

Note that models that are obtained by spectral analysis only can be 
represented as frequency response and noise spectra, and that models 
estimated by correlation analysis only can be represented as transient 
response.

About Plot Views
The six views all give similar plot windows, with several common features. 
They have a common menu bar, which covers some basic functions.
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First of all, note that there is a zoom function in the plot window. By dragging 
with the left mouse button down, you can draw rectangles, which are enlarged 
when the mouse button is released. Double-clicking restores the original axis 
scales. For plots with two axes, the x-axes scales are locked to each other. A 
single left-click zooms in by a factor of two, while the middle button zooms out. 
The zoom function can be deactivated if desired. Just select Zoom under Style.

Second, pointing to any curve in the plot and Shift-clicking identifies the curve 
with the model name and current coordinates.

The common menu bar covers the following functions:

File
File allows you to copy the current figure to another standard MATLAB figure 
window. This might be useful, for example, when you intend to print a 
customized plot. Other File items cover printing the current plot and closing 
the plot window.

Options
Options covers actions for setting the axes scaling. This menu item also 
provides choices that are specific for the current plot window, such as a choice 
between step response or impulse response in the Transient response 
window.

An important option is the possibility of showing confidence intervals. Each 
estimated model property has some uncertainty. This uncertainty can be 
estimated from data. When you select Show confidence intervals, a 
confidence region around the nominal curve (model property) is marked (by 
dash-dotted lines). You can also set the level of confidence using this menu 
item. 

Note  Confidence intervals are supported for most models and properties, 
except models estimated using etfe and the k-step-ahead prediction property. 
For n4sid, the covariance properties are actually not fully known. The 
Cramer-Rao lower limit for the covariance matrix is therefore used instead.
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Style
The Style menu gives access to various ways of affecting the plot. You can add 
gridlines, turn the zoom on and off, and change the line styles. The menu also 
covers a number of other options, like choice of units and scale for the axis.

Channel
For multivariate systems, you can choose which input-output channel to 
examine. The current choice is marked in the figure title.

Help
The Help menu has a number of items that explain the plot and its options.

Frequency Response and Disturbance Spectra 
All linear models that are estimated can be written in the form

y(t)=G(z)u(t)+v(t)

where G(z) is the (discrete-time) transfer function of the system and v(t) is an 
additive disturbance. The frequency response or frequency function of the 

system is the complex-valued function  viewed as a function of angular 
frequency ω. 

This function is often graphed as a Bode diagram. That is, the logarithm of the 

amplitude (the absolute value) of  and the phase (the argument) of 

 are plotted against the logarithm of frequency ω in two separate plots. 
These plots are obtained by selecting Frequency Response under Model 
Views in the main ident window.

You can plot the estimated spectrum of the disturbance v as a power spectrum 
by choosing Noise Spectrum under Model Views.

If the data is a time series y (with no input u), then the spectrum of y is plotted 
under the Noise Spectrum, and no frequency functions are given.

Transient Response
You can get insight into a model’s dynamic properties by looking at its step 
response or impulse response. This is the output of the model when the input 

G eiωT( )

G eiωT( )

G eiωT( )
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is a step or an impulse. These responses are plotted when you select Transient 
Response under Model Views.

It is informative to compare the transient response of a parametric model with 
the one that was estimated using correlation analysis. If there is good 
agreement between the two, you can be confident that some correct features 
have been picked up. It is useful to check the confidence intervals around the 
responses to see what “good agreement” could mean quantitatively.

Many models provide a description of the additive disturbance v(t):

v(t)=H(z)e(t)

Here H(z) is a transfer function that describes how the disturbance v(t) can be 
thought of as generated by sending white noise e(t) through it. To display the 
properties of H, you can choose channels (in the Channel menu) that have 
noise components as inputs. The names of these channels are like e@ynam, for 
the noise component of e that directly affects the output channel with name 
ynam.

Poles and Zeros
The poles of a system are the roots of the denominator of the transfer function 
G(z), while the zeros are the roots of the numerator. In particular the poles 
have a direct influence on the dynamic properties of the system.

You plot the poles and zeros of G (and H) by choosing Poles and Zeros under 
Model Views.

It is useful to turn on the confidence intervals in this case. They will reveal 
which poles and zeros could cancel each other (their confidence regions 
overlap). That is an indication that you could use a lower order dynamic model.

For multivariable systems, it is the poles and zeros of the individual 
input/output channels that are displayed. To obtain the so-called transmission 
zeros, you must export the model and then apply the command tzero. (This 
requires the Control System Toolbox.)

Compare Measured and Model Outputs 
A good way of obtaining insight into the quality of a model is to simulate the 
model with the input from a fresh data set and compare the simulated output 
with the measured one. This gives a good feel for which properties of the system 
have been picked up by the model, and which have not.
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You obtain this test by selecting Model Output under Model Views. Then the 
data set currently in the Validation Data box is used for the comparison. The 
fit is also displayed. This is computed as the percentage of the output variation 
that is reproduced by the model. So a model that has a fit of 0% gives the same 
mean square error as just setting the model output to the mean of the 
measured output. 

If the model is unstable, or has integration or very slow time constants, the 
levels of the simulated and the measured output can drift apart, even for a 
model that is quite good (at least for control purposes). Then it is a good idea to 
evaluate the model’s predicted output rather than the simulated one. With a 
prediction horizon of k, the k-step-ahead predicted output is obtained as 
follows:

The predicted value y(t) is computed from all available inputs  
(used according to the model) and all available outputs up to time 
t-k, . The simulation case, where no past outputs at all are 
used, thus formally corresponds to k=∞. To check whether the model has 
picked up interesting dynamic properties, it is wise to let the predicted time 
horizon (kT, T being the sampling interval) be larger than the important 
time constants.

Note that different models use the information in past output data in their 
predictors in different ways, depending on the disturbance model. For example, 
so-called output-error models (obtained by fixing K to zero for state-space 
models and setting na=nc=nd=0 for polynomial models) do not use past outputs 
at all. The simulated and the predicted outputs, for any value of k, thus 
coincide.

The character of the comparison depends on the type of validation data. For 
frequency-domain input/output validation data, the amplitudes of the 
measured output signal are shown together with the models’ simulated output 
frequency response (which is the product of the input frequency domain signal 
and the model frequency response). In this case, the predictions are not 
applicable. For frequency-response data the amplitude of the frequency 
response data is compared to the models’ frequency responses. Note that even 
though just the amplitudes are shown in the plots, the figure of fit refers to the 
distance between the functions as complex variables.

u s( ) s t≤( )

y s( ) s t k–≤( )
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Residual Analysis 
In a model

the noise source e(t) represents that part of the output that the model could not 
reproduce. It gives the left-overs, or the residuals. For a good model, the 
residuals should be independent of the input. Otherwise, there would be more 
in the output that originates from the input and that the model has not picked 
up.

To test this independence, compute the cross-correlation function between 
input and residuals by selecting Model Residuals under Model Views. It is 
wise to also display the confidence region for this function. For an ideal model 
the correlation function should lie entirely between the confidence lines for 
positive lags. If, for example, there is a peak outside the confidence region for 
lag k, this means that there is something in the output y(t) that originates from 
u(t-k) and that has not been properly described by the model. The test is carried 
out using the validation data. If these were not used to estimate the model, the 
test is quite tough. See also “Model Structure Selection and Validation” on 
page 3-70.

For a model also to give a correct description of the disturbance properties (i.e., 
the transfer function H), the residuals should be mutually independent. This 
test is also carried out by the view Model Residuals, by displaying the 
autocorrelation function of the residuals (excluding lag zero, for which this 
function by definition is 1). For an ideal model, the correlation function should 
be entirely inside the confidence region.

For frequency-domain validation data, the power spectrum of the residuals is 
shown, as well as the amplitude of the estimated transfer function from inputs 
to residuals.

Text Information
Double-clicking (right mouse button or Ctrl+click) the model icon opens a 
Data/Model Info dialog box containing some basic information about the 
model. It also has a diary of how the model was created, along with the notes 
that originally were associated with the estimation data set. At this point you 
can do a number of things.

y t( ) G z( )u t( ) H z( )e t( )+=
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Present
Clicking the Present button displays details of the model in the MATLAB 
Command Window. The model’s parameters along with estimated standard 
deviations are displayed, as well as some other notes.

Modify
You can type any text you want anywhere in the Diary and Notes field of the 
dialog box. You can also change the name of the model by editing the text field 
with the model name. The color associated with the model in all plots can also 
be edited. Enter RGB values or a color name (such as 'y') in the corresponding 
box.

LTI Viewer
If you have the Control System Toolbox, you will see a To LTI Viewer icon in 
the main window. Dragging and dropping a model onto this icon opens the LTI 
Viewer. This viewer handles an arbitrary amount of models, but it requires all 
of them to have the same number of inputs and outputs. Note that the LTI 
viewer is not fully live when you click in and out of the models on the model 
board. Instead, the LTI viewer has its own interface for dealing with models 
and channels (right-click in the plot).

Further Analysis in the MATLAB Workspace
You can export any model or data object to the MATLAB workspace by 
dragging and dropping its icon over the To Workspace box in the ident 
window.

Once you have exported the model to the workspace, there are many commands 
by which you can further transform it, examine it, and convert it to other 
formats for use in other toolboxes. Some examples of such commands are as 
follows:

d2c Transform to continuous time

ss, idss, ssdata Convert to state-space representation

tf, tfdata Convert to transfer function form

zpk, zpkdata Convert to zeros and poles
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Note that the commands ss, tf, and zkp transform the model to the Control 
System Toolbox’s LTI models. Moreover, if you have that toolbox, many of its 
LTI commands can be applied directly to the model objects of the System 
Identification Toolbox. See “Connections Between the Control System Toolbox 
and the System Identification Toolbox” on page 3-96.

If you need to prepare specialized plots that are not covered by the Views, all 
the System Identification Toolbox commands for computing and extracting 
simulations, frequency functions, zeros and poles, etc., are also available. See 
Chapter 3, “Tutorial” and Chapter 4, “Function Reference.” 
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Additional GUI Topics
This section discusses a number of different topics.

Mouse Buttons and Hot Keys
The GUI uses three mouse buttons. If you have fewer buttons on your mouse, 
the actions associated with the middle and right mouse buttons are obtained 
by Shift+click, Alt+click, or Ctrl+click, depending on the computer.

The Main ident Window
In the main ident window the mouse buttons are used to drag and drop, to 
select/clear models and data sets, and to double-click to get text information 
about the object. You can use the left mouse button for all of this. A certain 
speedup is obtained if you use the left button for dragging and dropping, the 
middle one (equivalent to Shift-click) for selecting models and data sets, and 
the right one (equivalent to Ctrl-click) for double-clicking. Actually, for the 
right mouse button, a single-click is sufficient. On a slow machine a 
double-click from the left button might not be recognized.

The ident window also has a number of hot keys. By pressing a keyboard letter 
when the ident window is the current window, you can quickly activate some 
functions. These are

• s: Computes the Spectral Analysis Model using the current option settings. 
(You can change options in the dialog box window that opens when you 
choose Estimate > Spectral Model.)

• c: Computes Correlation Analysis Model using the current option settings. 

• q: Computes the models associated with Quickstart.

• d: Opens a dialog box for importing data objects.

Plot Windows
In the various plot windows the action of the mouse buttons depends on 
whether zoom is activated or not.

If zoom is active. The left and middle mouse buttons are associated with the 
zoom functions, as in MATLAB. The left button zooms in and the middle one 
zooms out. In addition, you can draw rectangles with the left button to define 
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the area to be zoomed. Double-clicking restores the original plot. The right 
mouse button is associated with special GUI actions that depend on the 
window. In the View plots, the right mouse button is used to identify the 
curves. Point and click a curve, and a box displays the name of the model/data 
set that the curve is associated with, and also the current coordinate values for 
the curve. In the Model Selection plots, the right mouse button is used to 
inspect and select the various models. In the Prefilter and Data Range plots, 
rectangles are drawn with this mouse button down to define the selected range.

If zoom is not active. The special GUI functions just mentioned are obtained 
by any mouse button.

The zoom is activated and deactivated using the Style menu. The default 
setting differs between the plots. 

Note  Don’t activate the zoom from the command line! That will destroy the 
special GUI functions. (If you happen to do so anyway, quit the window and 
open it again.)

Troubleshooting in Plots
The function Auto-range under the Options menu sets automatic scales to the 
plots. It is also a good function to invoke when you think that you have lost 
control over the curves in the plot. (This might happen, for example, if you zoom 
in a portion of a plot and then change the data of the plot.)

If the view plots don’t respond the way you expect them to, you can always quit 
the window and open it again. By quit here is meant using the underlying 
window system’s own quitting mechanism, which is called different things in 
the different platforms. The normal way to close a window is to use the Close 
function under the File menu or to clear the corresponding check box.

Layout Questions and idprefs.mat
The GUI comes with a number of preset defaults. These include the window 
sizes and positions, the colors of the different models, and the default options 
in the different View windows.

You can change the window sizes and positions, as well as the options in the 
plot windows, in the standard way. If you want the GUI to start with your 
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current window layout and current plot options, select Options > Save 
preferences in the main ident window. This saves the information in a file 
idprefs.mat. This file also stores information about the four most recent 
sessions with ident. This allows the session File menu to be correctly 
initialized. The session information is automatically stored upon exit. The 
layout and preference information is only saved when you select the indicated 
option.

The file idprefs.mat is created the first time you close the GUI. It is stored in 
the same directory as your startup.m file by default. If this default does not 
work, you are prompted for a directory to store the file. You can ignore this, but 
then you cannot save session and preference information.

To change or select a directory for idprefs.mat, use the command midprefs.

To change model colors and default options to your own customized choices, 
make a copy of the M-file idlayout.m to your own directory (which should be 
before the basic ident directory in the MATLABPATH), and edit it according to its 
instructions.

Customized Plots
If you need to prepare hardcopies of your plots with specialized texts, titles, and 
so on, make a copy of the figure first, using File > Copy Figure. This produces 
a copy of the current figure in a standard MATLAB figure format.

For plots that are not covered by the View windows (e.g., Nyquist plots), you 
have to export the model to the MATLAB workspace and construct the plots 
there.

What You Cannot Do Using the GUI
The GUI enables you to examine the data, estimate models, and evaluate and 
compare models. However, you cannot do the following in the GUI:

• Generate (simulate) data sets

• Create models (by methods other than estimation)
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• Manipulate and convert models

• Use recursive (online) estimation algorithms

To see what M-files are available in the toolbox for these functions, see 
“Toolbox Commands” on page 3-3, as well as “Simulation and Prediction” on 
page 4-4, “Model Structure Creation” on page 4-8, “Manipulating Model 
Structures” on page 4-10, “Model Conversion” on page 4-11, and “Recursive 
Parameter Estimation” on page 4-8.

Note that at any point you can export a data set or a model to the MATLAB 
workspace (by dragging and dropping its icon on the To Workspace icon). 
There you can modify and manipulate it any way you want and then import it 
back into ident. You can, for example, construct a continuous-time model from 
an estimated discrete-time one (using d2c), and then use the model views to 
compare the two.
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Overview
This chapter has three purposes:

• It provides an overview of system identification theory, the basic models and 
disturbance descriptions used, and the character of the basic algorithms. It 
also provides some practical advice for a number of issues that are essential 
for a successful application.

• It describes the commands and objects of the System Identification Toolbox, 
their syntax and use. If you primarily use the graphical user interface (GUI), 
you will not have to bother about these aspects.

• It describes the commands that are not reached from the GUI, that is, 
simulation, the recursive algorithms, and more advanced model structure 
definitions. 
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Toolbox Commands
It might be useful to recognize several layers of the System Identification 
Toolbox. Initially concentrate on the first layer of basic tools, which contains 
the commands from the System Identification Toolbox that any user must 
master. You can proceed to the next levels whenever an interest or the need 
from the applications warrants it. The layers are described in the following 
paragraphs:

Layer 0: Help Functions. Help ident gives an overview of available commands. 
idhelp gives access to a micromanual of command-line help, with several 
subhelps like idhelp evaluate, etc. There is also a command advice that can 
be applied to any data set and any model.

advice(data)
advice(model)

This gives text information on the screen about the quality of the data/model 
and some advice on how to proceed.

Layer 1: Basic Tools for Estimating Black-Box Models. The first layer contains the basic 
tools for estimating models from measured data. It is necessary to know the 
basics of the data representation and the simple commands to build and 
evaluate black-box models. The commands are

The corresponding background is given in the next few sections of this tutorial. 

Data representation iddata, plot

Nonparametric estimation of 
impulse and frequency response

impulse, step, spa

Estimating black-box models of 
state-space and input-output 
type

pem, arx

Evaluating models compare, resid

Displaying model characteristics bode, nyquist, pzmap, step, view

Looking at parametric model 
characteristics

By field referencing, like Mod.A, Mod.dA
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Layer 2: Creating Models for Simulation and Transforming Models. To define models, to 
generate inputs, and to simulate models,

idarx, idpoly, idproc, idss, idinput, sim

To transform models to other representations,

arxdata, polydata, ssdata, tfdata, zpkdata

Layer 3: Model Structure Selection. The third layer of the toolbox contains some 
useful techniques to select orders and delays. 

arxstruc, selstruc

Layer 4: Structured Models and Further Model Conversions. The fourth layer contains 
transformations between continuous and discrete time, and functions for 
estimating completely general model structures for linear systems. The 
commands are

c2d, d2c, idss, idgrey, pe, predict
ss, tf, zp, frd (to be used with the Control System Toolbox)

The corresponding material is covered in “Defining Model Structures” on 
page 3-39 and in “Examining Models” on page 3-57. 

Layer 5: Recursive Identification. Recursive (adaptive, online) methods of 
parameter estimation are covered by the commands

rarmax, rarx, rbj, roe, rpem, rplr

They are covered in “Recursive Parameter Estimation” on page 3-86. 

See Chapter 4, “Function Reference” for a complete list of available functions.
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An Introductory Example to Command Model
A demonstration M-file called iddemo.m provides several examples of typical 
sessions with the System Identification Toolbox. To start the demo, execute 
iddemo from inside MATLAB.

Before giving a formal treatment of the capabilities and possibilities of the 
toolbox, this example is designed to get you started with the software quickly. 
This example is essentially the same as demo #2 in iddemo. You might want to 
invoke MATLAB at this time, execute the demo, and follow along.

Example Details
Data has been collected from a laboratory scale process. (Feedback’s Process 
Trainer PT326; see page 526 in Ljung (1999). For more references, see 
“Reading More About System Identification” on page 1-22.) The process 
operates much like a common hand-held hair dryer. Air is blown through a 
tube after being heated at the inlet to the tube. The input to the process is the 
power applied to a mesh of resistor wires that constitutes the heating device. 
The output of the process is the air temperature at the outlet, measured in volts 
by a thermocouple sensor. 

One thousand input-output data points were collected from the process as the 
input was changed in a random fashion between two levels. The sampling 
interval is 80 ms. The data was loaded into MATLAB in ASCII form and is now 
stored as the vectors y2 (output) and u2 (input) in the file dryer2.mat.

1 Load the data.

load dryer2

2 It contains the input vector u2, the output vector y2. Now form the data 
object.

dry = iddata(y2,u2,0.08);

3 To get information about the data, just type the name.

dry 

4 To get an overview of all the information contained in the iddata object dry, 
type 

get(dry)
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5 For better bookkeeping, give names to input and outputs.

dry.InputName = 'Power';

dry.OutputName = 'Temperature';

6 Select the 300 first values for building a model.

ze = dry(1:300); 

7 Plot the interval from sample 200 to 300.

plot(ze(200:300)), 

8 Remove the constant levels and make the data zero-mean.

ze = detrend(ze);

9 First estimate the impulse response of the system by correlation analysis to 
get some idea of time constants and the like.

impulse(ze,'sd',3) 

This gives a plot with dash-dotted lines marking a confidence region 
corresponding to three standard deviations (ca 99.9%). From this it is easy to 
see if there is a time delay in the system. 

Getting Started
The simplest way to get started is to build a state-space model where the order 
is automatically determined, using a prediction error method.

m1 = pem(ze)

When the calculations are finished, a display of the basic information about m1 
is shown. Any time you type m1, this display is shown. Typing present(m1) 
gives some more information about the model, including uncertainties.

To retrieve the properties of this model you could, for example, find the A 
matrix of the state space representation by

A = m1.a

m1 is a model object, and 

get(m1)

gives a list of all information stored in the model.
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m1.EstimationInfo or m1.es for short gives information about the estimation 
process, loss functions, etc.

How Good Is the Model?
How good is this model? One way to find out is to simulate it and compare the 
model output with measured output. Select a portion of the original data that 
was not used to build the model, for example, from sample 800 to 900.

zv = dry(800:900);
zv = detrend(zv);
compare(zv,m1); 

The Bode plot of the model is obtained by

bode(m1) 

An alternative is to consider the Nyquist plot and mark uncertainty regions at 
certain frequencies with ellipses, corresponding to three standard deviations.

nyquist(m1,'sd',3) 

You can also compare the step response of the model with one that is directly 
computed from data (ze) in a nonparametric way.

step(m1,ze) 

To study a model with prescribed structure, compute a difference equation 
model with two poles, one zero, and three delays.

m2 = arx(ze,[2 2 3])

This produces a model of the form

where T is the sampling interval (here 0.08 second). This model, known as an 
ARX model, tries to explain or compute the value of the output at time t, given 
previous values of y and u. To compare its performance on validation data with 
m1, type

compare(zv,m1,m2); 

y t( ) a1y t T–( ) a2y t 2T–( )+ + b1u t 3T–( ) b2u t 4T–( )+=



3 Tutorial

3-8

Compare and Plot
Compute and plot the poles and zeros of the models.

pzmap(m1,m2) 

The uncertainties of the poles and zeros can also be plotted.

pzmap(m1,m2,'sd',3), % '3' denotes the number of standard 
deviations

Estimate the frequency response by a nonparametric spectral analysis method.

gs = spa(ze);

Compare with the frequency functions from the parametric models.

bode(m1,m2,gs) 
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The System Identification Problem
This section discusses basic ways to describe linear dynamic systems and the 
most important methods for estimating such models.

Impulse Responses, Frequency Functions, and 
Spectra

The basic input-output configuration is depicted in the figure above. Assuming 
unit sampling interval, there is an input signal

and an output signal

Assuming the signals are related by a linear system, the relationship can be 
written

(3-1)

where q is the shift operator and is short for

(3-2)

and

(3-3)

y

e

u

u t( ); t 1 2 … N, , ,=

y t( ); t 1 2 … N, , ,=

y t( ) G q( )u t( ) v t( )+=

G q( )u t( )

G q( )u t( ) g k( )u t k–( )

k 1=

∞

∑=

G q( ) g k( )q k– ;

k 1=

∞

∑= q 1– u t( ) u t 1–( )=
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The numbers are called the impulse response of the system. Clearly, 
is the output of the system at time k if the input is a single (im)pulse at 

time zero. The function is called the transfer function of the system. This 
function evaluated on the unit circle gives the frequency function (or 
frequency-response function).

(3-4)

In (Equation 3-1)  is an additional, unmeasurable disturbance (noise). Its 
properties can be expressed in terms of its (power) spectrum

(3-5)

which is defined by

(3-6)

where is the covariance function of 

(3-7)

and E denotes mathematical expectation. Alternatively, the disturbance  
can be described as filtered white noise

(3-8)

where is white noise with variance  and

(3-9)

(Equation 3-1) and (Equation 3-8) together give a time-domain description of 
the system

(3-10)

where G is the transfer function of the system. (Equation 3-4) and 
(Equation 3-5) constitute a frequency-domain description.

(3-11)

g k( ){ }
g k( )

G q( )
q eiω=( )

G eiω( )

v t( )

Φv ω( )

Φv ω( ) Rv τ( )e iωτ–

τ ∞–=

∞

∑=

Rv τ( ) v t( )

Rv τ( ) Ev t( )v t τ–( )=

v t( )

v t( ) H q( )e t( )=

e t( ) λ

Φv ω( ) λ H eiω( )
2

=

y t( ) G q( )u t( ) H q( )e t( )+=

G eiω( ); Φv ω( )
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The impulse response (Equation 3-3) and the frequency-domain description 
(Equation 3-11) are called nonparametric model descriptions because they are 
not defined in terms of a finite number of parameters. The basic description 
(Equation 3-10) also applies to the multivariable case, that is, to systems with 
several (say nu) input signals and several (say ny) output signals. In that 
case is an ny-by-nu matrix while and are ny-by-ny matrices.

Polynomial Representation of Transfer Functions
Rather than specifying the functions G and H in (Equation 3-10) in terms of 
functions of the frequency variable , you can describe them as rational 
functions of  and specify the numerator and denominator coefficients in 
some way.

A commonly used parametric model is the ARX model that corresponds to

(3-12)

where B and A are polynomials in the delay operator .

(3-13)

Here, the numbers na and nb are the orders of the respective polynomials. The 
number nk is the number of delays from input to output. The model is usually 
written

(3-14)

or explicitly

(3-15)

Note that (Equation 3-14) and (Equation 3-15) apply also to the multivariable 
case, with ny output channels and nu input channels. Then  and the 
coefficients  become ny-by-ny matrices, and and the coefficients  
become ny-by-nu matrices. 

Another very common, and more general, model structure is the ARMAX 
structure

G q( ) H q( ) Φv ω( )

ω
q 1–

G q( ) q nk– B q( )
A q( )
------------;⋅= H q( ) 1

A q( )
------------=

q 1–

A q( ) 1 a1q 1– …… anaq na–+ + +=

B q( ) b1 b2q 1– …… bnbq nb– 1++ + +=

A q( )y t( ) B q( )u t nk–( ) e t( )+=

y t( ) a1y t 1–( ) …… anay t na–( )+ + + =

b1u t nk–( ) b2u t nk– 1–( ) …… bnbu t nk– nb– 1+( ) e t( )+ + + +

A q( )
ai B q( ) bi
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(3-16)

Here, and are as in (Equation 3-13), while

An output-error (OE) structure is obtained as

(3-17)

with

The so-called Box-Jenkins (BJ) model structure is given by

(3-18)

with

All these models are special cases of the general parametric model structure.

(3-19)

The variance of the white noise  is assumed to be .

Within the structure of (Equation 3-19), virtually all the usual linear black-box 
model structures are obtained as special cases. The ARX structure is obviously 
obtained for . The ARMAX structure corresponds to 

. The ARARX structure (or the generalized least squares model) 
is obtained for , while the ARARMAX structure (or extended 
matrix model) corresponds to . The output-error model is obtained with 

, while the Box-Jenkins model corresponds to . (See 
Section 4.2 in Ljung (1999) for a detailed discussion.)

The same type of models can be defined for systems with an arbitrary number 
of inputs. They have the form

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

A q( ) B q( )

C q( ) 1 c1q 1– … cncq nc–+ + +=

y t( ) B q( )
F q( )
------------u t nk–( ) e t( )+=

F q( ) 1 f1q 1– … fnfq
nf–+ + +=

y t( ) B q( )
F q( )
------------u t nk–( ) C q( )

D q( )
-------------e t( )+=

D q( ) 1 d1q 1– … dndq nd–+ + +=

A q( )y t( ) B q( )
F q( )
------------u t nk–( ) C q( )

D q( )
-------------e t( )+=

e t( ){ } λ

nc nd nf 0= = =
nf nd 0= =

nc nf 0= =
nf 0=

na nc nd 0= = = na 0=
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(3-20)

State-Space Representation of Transfer Functions
A common way of describing linear systems is to use the state-space form.

(3-21)

Here the relationship between the input  and the output  is defined 
via the nx-dimensional state vector . In transfer function form 
(Equation 3-21) corresponds to (Equation 3-1) with

(3-22)

Here  is the nx-by-nx identity matrix. Clearly (Equation 3-21) can be 
viewed as one way of parameterizing the transfer function: With 
(Equation 3-22), becomes a function of the elements of the matrices A, B, 
C, and D.

To further describe the character of the noise term  in (Equation 3-21), a 
more flexible innovations form of the state-space model can be used.

(3-23)

This is equivalent to (Equation 3-10) with given by (Equation 3-22) and 
by

(3-24)

Here ny is the dimension of  and . 

It is often possible to set up a system description directly in the innovations 
form (Equation 3-23). In other cases, it might be preferable to describe first the 
nature of disturbances that act on the system. That leads to a stochastic 
state-space model

(3-25)

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( ) ...+

Bnu q( )
Fnu q( )
-------------------

·
unu t nknu–( ) C q( )

D q( )
-------------e t( )++=

x t 1+( ) Ax t( ) Bu t( )+=
y t( ) Cx t( ) Du t( ) v t( )+ +=

u t( ) y t( )
x t( )

G q( ) C qInx A–( ) 1– B D+=

Inx

G q( )

v t( )

x t 1+( ) Ax t( ) Bu t( ) Ke t( )+ +=
y t( ) Cx t( ) Du t( ) e t( )+ +=

G q( )
H q( )

H q( ) C qInx A–( ) 1– K Iny+=

y t( ) e t( )

x t 1+( ) Ax t( ) Bu t( ) w t( )+ +=
y t( ) Cx t( ) Du t( ) e t( )+ +=
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where  and are stochastic processes with certain covariance 
properties. If you neglect transients and consider only the input-output 
properties, (Equation 3-25) is equivalent to (Equation 3-23) if the matrix K is 
chosen as the steady-state Kalman gain. How to compute K from 
(Equation 3-25) is described in the Control System Toolbox documentation.

Continuous-Time State-Space Models
It is often easier to describe a system from physical modeling in terms of a 
continuous-time model. The reason is that most physical laws are expressed in 
continuous time as differential equations. Therefore, physical modeling 
typically leads to state-space descriptions like

(3-26)

Here,  means the time derivative of . If the input is piecewise constant over 
time intervals , then the relationship between  
and  can be exactly expressed by (Equation 3-21) by taking

(3-27)

and associating  with , etc. If you start with a continuous-time 
innovations form

(3-28)

the discrete-time counterpart is given by (Equation 3-23) where the 
relationships (Equation 3-27) still hold. The exact connection between  and 

 is somewhat more complicated, though. An ad hoc solution is to use

 (3-29)

in analogy with G and B. This is a good approximation for short sampling 
intervals T.

w t( ) e t( )

x· t( ) Fx t( ) Gu t( )+=
y t( ) Hx t( ) Du t( ) v t( )+ +=

x· x
kT t k 1+( )T<≤ u k[ ] u kT( )=

y k[ ] y kT( )=

A eFT;= B eFτG τ;d

0

T

∫= C H=

y tT( ) y t[ ]

x· t( ) Fx t( ) Gu t( ) K̃e t( )+ +=
y t( ) Hx t( ) Du t( ) e t( )+ +=

K̃
K

K eFτK̃ τ;d

0

T

∫=
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Estimating Impulse Responses
Consider the descriptions (Equation 3-1) and (Equation 3-2). To directly 
estimate the impulse response coefficients, also in the multivariable case, it is 
suitable to define a high-order Finite Impulse Response (FIR) model

(3-30)

and estimate the g-coefficients by the linear least squares method. In fact, to 
check whether there are noncausal effects from input to output, for example, 
due to feedback from y in the generation of u (closed loop data), g for negative 
lags can also be estimated.

(3-31)

If u is white noise, the impulse response coefficients will be correctly estimated, 
even if the true dynamics from u to y are more complicated than these models. 
Therefore it is natural to filter both the output and the input through a filter 
that makes the input sequence as white as possible before estimating the g. 
This is the essence of correlation analysis for estimating impulse responses.

Estimating Spectra and Frequency Functions
This section describes methods that estimate the frequency functions and 
spectra (Equation 3-11) directly. The cross-covariance function  
between and  is defined as  analogously to 
(Equation 3-7). Its Fourier transform, the cross spectrum , is defined 
analogously to (Equation 3-6). Provided that the input is independent of 

, the relationship (Equation 3-1) implies the following relationships 
between the spectra.

(3-32)

By estimating the various spectra involved, you can estimate the frequency 
function and the disturbance spectrum as follows:

Form estimates of the covariance functions (as defined in (Equation 3-7)) 
, , and , using 

y t( ) g 0( )u t( ) g 1( )u t 1–( ) … g n( )u t n–( )+ + +=

y t( ) g m–( )u t m+( ) … g 1–( )u t 1+( ) g 0( )u t( )+ + + +=
g 1( )u t 1–( ) … g n( )u t n–( )+ +

Ryu τ( )
y t( ) u t( ) Ey t τ+( )u t( )

Φyu ω( )
u t( )

v t( )

Φy ω( ) G eiω( )
2

Φu ω( ) Φv ω( )+=

Φyu ω( ) G eiω( )Φu ω( )=

R̂y τ( ) Ryu τ( ) R̂u τ( )
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(3-33)

and analog expressions for the others. Then, form estimates of the 
corresponding spectra

(3-34)

and analogously for  and . Here  is the so-called lag window and 
M is the width of the lag window. The estimates are then formed as 

(3-35)

This procedure is known as spectral analysis. (See Chapter 6 in Ljung (1999).)

Estimating Parametric Models
Given a description (Equation 3-10) and having observed the input-output data 
u, y, the (prediction) errors  in (Equation 3-10) can be computed as

(3-36)

These errors are, for given data y and u, functions of G and H. These in turn 
are parameterized by the polynomials in (Equation 3-14) through 
(Equation 3-19) or by entries in the state-space matrices defined in 
(Equation 3-26) through (Equation 3-29). The most common parametric 
identification method is to determine estimates of G and H by minimizing

(3-37)

that is

R̂yu τ( ) 1
N
---- y t τ+( )u t( )

t 1=

N
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Φ
ˆ

y ω( ) Ry
ˆ τ( )WM τ( )e iωτ–

τ M–=

M

∑=

Φu Φyu WM τ( )

ĜN eiω( ) Φ
ˆ

yu ω( )

Φ
ˆ

u ω( )
-------------------;= Φ

ˆ
v ω( ) Φ

ˆ
y ω( ) Φ

ˆ
yu ω( )

2

Φ
ˆ

u ω( )
-------------------------–=
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e t( ) H 1– q( ) y t( ) G q( )u t( )–[ ]=
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t 1=

N
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(3-38)

This is called a prediction error method. For Gaussian disturbances it coincides 
with the maximum likelihood method. (See Chapter 7 in Ljung (1999).)

A somewhat different philosophy can be applied to the ARX model 
(Equation 3-14). By forming filtered versions of the input

(3-39)

and by multiplying (Equation 3-14) with , , 2, , na and 
, , 2, , nb and summing over t, the noise in 

(Equation 3-14) can be correlated out and solved for the dynamics. This gives 
the instrumental variable method, and  are called the instruments. (See 
Section 7.6 in Ljung (1999).)

Subspace Methods for Estimating State-Space 
Models
The state-space matrices A, B, C, D, and K in (Equation 3-23) can be estimated 
directly, without first specifying any particular parameterization by efficient 
subspace methods. The idea behind this can be explained as follows: If the 
sequence of state vectors x(t) were known, together with y(t) and u(t), 
(Equation 3-23) would be a linear regression, and C and D could be estimated 
by the least squares method. Then e(t) could be determined, and treated as a 
known signal in (Equation 3-23), which then would be another linear 
regression model for A, B, and K. (One could also treat (Equation 3-21) as a 
linear regression for A, B, C, and D with y(t) and x(t+1) as simultaneous 
outputs, and find the joint process and measurement noises as the residuals 
from this regression. The Kalman gain K could then be computed from the 
Riccati equation.) Thus, once the states are known, the estimation of the 
state-space matrices is easy.

How to find the states x(t)? All states in representations like (Equation 3-23) 
can be formed as linear combinations of the k-step-ahead predicted outputs 
(k = 1,2,...,n). It is thus a matter of finding these predictors, and then 
selecting a basis among them. The subspace methods form an efficient and 
numerically reliable way of determining the predictors by projections directly 

ĜN ĤN ],[ argmin e2 t( )

t 1=

N

∑=

N q( )s t( ) M q( )u t( )=

s t k–( ) k 1= …
u t nk– 1 k–+( ) k 1= …

s t( )
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on the observed data sequences. See Sections 7.3 and 10.6 in Ljung (1999). For 
more details, see the references under n4sid in the reference pages.

The advice Command
A general command, advice, can be applied to any estimated model and to any 
data set,

advice(model)
advice(data)

to provide the user with information about the quality of the model and 
characteristics, possibilities, and fallacies for the data set.
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Data Representation and Nonparametric Model Estimation
This and the following sections introduce the basic functions in the System 
Identification Toolbox. Not all of the options available when using the functions 
are described here; see Chapter 4, “Function Reference,” and the online Help 
facility.

Data Representation
The observed output and input signals,  and , are represented as 
column vectors y and u. Row k corresponds to sample number k. For 
multivariable systems, each input (output) component is represented as a 
column vector, so that u becomes an N-by-nu matrix (N = number of sampled 
observations, nu = number of input channels). The output-input data is 
collectively represented in the iddata format. This is the basic object for 
dealing with signals in the toolbox. It is used by most of the commands. Create 
it using

Data = iddata(y,u,Ts)

where y is a column vector or an N-by-ny matrix. The columns of y correspond 
to the output channels. Similarly u is a column vector or an N-by-nu matrix 
containing the signals of the input channels. Ts is the sampling interval. This 
construction is sufficient for almost all purposes.

The data is then plotted by plot(Data) and portions of the data record are 
selected, as in 

ze = Data(1:300) 

You can retrieve the signals in the output channels using Data.OutputData or, 
for short, Data.y. Similarly you can obtain the input signals using 
Data.InputData or Data.u.

For a time series (no input channels) use Data = iddata(y), or let u = [ ]. An 
iddata object can also contain just an input if you let y = [ ].

You can change the sampling interval by using set(Data,'Ts',0.3) or, more 
simply, by

Data.Ts = 0.3

More details about the iddata object are given at the end of this section.

y t( ) u t( )
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Correlation Analysis
The correlation analysis procedure described in “Estimating Impulse 
Responses” on page 3-15 is implemented in the function impulse.

impulse(Data)

This function plots the estimated impulse response. Adding an argument 'sd' 
as in

impulse(Data,'sd',3)

also marks a confidence region corresponding to (in this case) three standard 
deviations. The result can be stored and replotted.

ir = impulse(Data)
impulse(ir,'sd',3)

An alternative is the command step that plots the step response, calculated 
from the impulse estimate.

step(Data)

Spectral Analysis
The function spa performs spectral analysis according to the procedure in 
(Equation 3-35) through (Equation 3-37).

g = spa(Data)

Here Data contains the output-input data in the iddata object as above. g is 
returned as an idfrd (identified frequency response data) model object that 
contains the estimated frequency function  and the estimated disturbance 
spectrum  in (Equation 3-37), as well as estimated uncertainty covariances. 
The idfrd object is described in the idfrd reference page, but for normal use 
you do not have to bother about these details. The frequency function, or 
frequency response, G in g can be graphed by the function bode, ffplot, or 
nyquist. The noise spectrum is retrieved by g('n') ('n' for noise) so

g = spa(Data)
bode(g)
bode(g('n'))

performs the spectral analysis, and plots first G and then . The bode 
function gives logarithmic amplitude and frequency scales (in rad/s) and linear 

GN
Φ
ˆ

v

Φv
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phase scale, while ffplot gives linear frequency scales (in Hz). You can display 
the uncertainty of the estimates by adding the argument 'sd', as in

bode(g,'sd',3)

which displays, by dash-dotted lines, a confidence region around the estimate 
that corresponds (in this case) to three standard deviations. Adding an 
argument 'fill' shows the uncertainty region as a filled region instead. 

bode(g,'sd',3,'fill')

Similarly,

nyquist(g)

gives a Nyquist plot of the frequency function, that is, a plot of the real part 
versus the imaginary part of G.

If Data = y is a time series, that is, Data has no input channel, spa returns an 
estimate of the spectrum of that signal.

g= spa(y)
ffplot(g)

In the computations (Equation 3-35) through (Equation 3-37), spa uses as a lag 
window the Hamming window for  with a default length M equal to the 
minimum of 30 and a tenth of the number of data points. You can change this 
window size M to an arbitrary number using

g = spa(Data,M)

The rule is that as M increases, the estimated frequency functions show sharper 
details, but are also more affected by random disturbances. A typical sequence 
of commands that test different window sizes is 

g10 = spa(Data,10)
g25 = spa(Data,25)
g50 = spa(Data,50)
bode(g10, g25, g50)

An empirical transfer function estimate is obtained as the ratio of the output 
and input Fourier transforms with

g = etfe(Data)

W τ( )
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This can also be interpreted as the spectral analysis estimate for a window size 
that is equal to the data length. For time series, etfe gives the periodogram as 
a spectral estimate. The function also allows some smoothing of the crude 
estimate; it can be a good alternative for signals and systems with sharp 
resonances. See Chapter 4, “Function Reference,” for more information.

Estimation of spectra and frequency functions involves a tradeoff between 
resolution and noise sensitivity. By resolution is meant the finest details (in 
rad/s) that can be distinguished in the estimate, while noise sensitivity 
describes how disturbances of different kinds give high variability in the 
estimates. The number M mentioned above is a way to control this tradeoff 
globally over the frequency range.

A useful complement to etfe and spa is the possibility of having 
frequency-dependent resolution, using the command spafdr,

g = spafdr(Data)
g = spafrd(Data,Res,Freqs)

with the possibility of defining both the frequencies Freqs for which the 
estimate should be formed and the resolution Res for the different frequencies. 
See the spafdr reference page for more details.

Frequency Domain Data
The iddata object can also represent frequency-domain data, that is, input and 
output signals that are Fourier transforms of time-domain signals. Such data 
sets are useful in many contexts. You create a frequency-domain data set by

Data = iddata(Y,U,Ts,'Domain,'Frequency','freq',W)

where Y and U are the output and input Fourier transforms (N-by-ny and 
N-by-nu complex-valued matrices) and W is the vector of associated frequencies. 
That means that Y(kf,ky) is the frequency component of output number ky at 
frequency W(kf). Frequency-domain data can also easily be constructed from 
time-domain data, as in

dataf = fft(data)

A further way to handle frequency-domain information for model estimation is 
to define a frequency response data object (IDFRD) that contains the 
frequency-response data of a system, as in Equation 3-11:

datfr = idfrd(G,W,Ts)
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datfr = idfrd(G,W,Ts,'SpectrumData',Phiv)

Here G is the frequency response function, W is the vector of frequencies, and Ts 
is the sampling interval. Optionally, you can also include the additive output 
spectrum Phiv = .

You can also create a frequency-response data object from a model or from data 
by

datafr = idfrd(model)
datafr = spafdr(Data)

(Compare the techniques on page 3-20.) While datafr can be seen as a 
nonparametric model of the system, it can also be seen as a more compact way 
of representing the data Data. This representation can be used to further 
estimate parametric models. Also, in many applications it is common to use 
frequency analyzers for data acquisition. They deliver data in the 
frequency-function form rather than as separate input and output signals, in a 
much more compact form.

More details of this are given on the reference pages for iddata and idfrd. The 
main message here is that the handling of data in time and frequency domain 
is essentially transparent. All estimation and representation commands that 
apply to time-domain data can also be used with the same syntax for 
frequency-domain data.

Two differences can be noted:

• Noise models cannot be estimated from frequency-domain data.

• Frequency-domain data can handle representation of time-continuous 
signals (Ts = 0). This means that Y and U are the continuous-time Fourier 
transforms given at a finite number of frequencies.

More on the Data Representation in iddata

Some Bookkeeping Facilities
The input and output channels are given default names like y1, y2, u1, u2, etc. 
You can set the channel names using

set(Data,'InputName',{'Voltage','Current'},'OutputName','Tempera
ture')

Φv ω( )
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(two inputs and one output in this example) and these names will then follow 
the object and appear in all plots. The names are also inherited by models that 
are estimated from the data.

Similarly, you can specify channel units using the properties OutputUnit and 
InputUnit. These units, when specified, are used in plots.

The time points associated with the data samples are determined by the 
sampling interval Ts and the time of the first sample, Tstart.

Data.Tstart = 24

The actual time-point values are given by the property SamplingInstants, as 
in

plot(Data.sa,Data.u)

for a plot of the input with correct time points. Autofill is used for all properties, 
and they are case insensitive. For easy writing, 'u' is synonymous with 
'Input' and 'y' with 'Output' when you are referring to the properties.

Manipulating Channels
An easy way to set and retrieve channel properties is to use subscripting. The 
subscripts are defined as 

Data(samples,outputs,inputs)

so Dat(:,3,:) is the data object obtained from Dat by keeping all input 
channels, but only output channel 3. (Trailing colons can be omitted, so 
Dat(:,3,:) = Dat(:,3).)

You can also retrieve the channels by their names, so that 

Dat(:,{'speed','flow'},[ ]) 

is the data object where the indicated output channels have been selected and 
no input channels are selected.

Moreover,

Dat1(101:200,[3 4],[1 3]) = Dat2(1001:1100,[1 2],[6 7])

will change samples 101 to 200 of output channels 3 and 4 and input channels 
1 and 3 in the iddata object Dat1 to the indicated values from iddata object 
Dat2. The names and units of these channels are then also changed 
accordingly.
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To add new channels, use horizontal concatenation of iddata objects.

Dat =[Dat1, Dat2];

See “Adding Channels” on page 3-27 or add the data record directly, so that 

Dat.u(:,5) = u 

adds a fifth input to Dat.

Nonequal Sampling
The property SamplingInstants gives the sampling instants of the data points. 
It can always be retrieved by get(Dat,'SamplingInstants') (or Dat.s) and is 
then computed from Dat.Ts and Dat.Tstart. SamplingInstants can also be 
set to an arbitrary vector of the same length as the data, so that nonequal 
sampling can be handled. Ts is then automatically set to [ ]. Most of the 
estimation routines, however, do not handle unequally sampled data.

Multiple Experiments
The iddata object can also store data from separate experiments. The property 
ExperimentName is used to separate the experiments. The number of data as 
well as the sampling properties can vary from experiment to experiment, but 
the input and output channels must be the same. (Use NaNs to fill unmeasured 
channels in certain experiments.) The data records will be cell arrays where 
the cells contain data from each experiment.

You can define multiple experiments directly by letting the 'y' and 'u' 
properties as well as 'Ts' and 'Tstart' be cell arrays.

It is normally easier to create multiple-experiment data by merging 
experiments, as in

Dat = merge(Dat1,Dat2) 

See the merge (iddata) reference page. Storing multiple experiments as one 
iddata object can be very useful to handle experimental data that has been 
collected on different occasions, or when a data set has been split up to remove 
bad portions of the data. All the toolbox’s routines accept multiple-experiment 
data.

You can retrieve experiments using the command getexp, as in getexp(Dat,3) 
or getexp(Dat,'Period1'). You can also set and retrieve them by subscripting 
with a fourth index: Dat(:,:,:,3)} is experiment number 3 and 
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Dat(:,:,:,{'Day1','Day4'}) retrieves the two experiments with the 
indicated names.

The subscripting can be combined: Dat(1:100,[2,3],[4:8],3) gives the 100 
first samples of output channels 2 and 3 and input channels 4 to 8 of 
experiment number 3. You can also use subscripting for subassignment:

Dat(:,:,:,''Run4') = Dat2 

adds the data in Dat2 as a new experiment with name 'Run4'. See iddemo #9 
for an illustration of how multiple experiments can be used.

iddata Properties
Type get(Dat) or see the iddata reference page for a complete list of iddata 
properties.

Subreferencing
The samples, outputs, and input channels can be referenced according to

Data(samples,outputs,inputs)

Use a colon (:) to denote all samples/channels and the empty matrix ([ ]) to 
denote no samples/channels. The channels can be referenced by number or by 
name. For several names you must use a cell array.

Dat2 = Dat(:,'y3',{'u1','u4'})
Dat2 = Dat(:,3,[1 4])

Logical expressions also work.

Dat3 = Dat2(Dat2.sa>1.27&Dat2.sa<9.3)

selects the samples with time marks between 1.27 and 9.3.

Any subreferenced variable can also be assigned.

Data(1:10,1,1) = Dat1(101:110,2,3)
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Adding Channels
Dat = [Dat1,Dat2,...,DatN]

creates an iddata object Dat, consisting of the input and output channels in 
Dat1,... DatN. Default channel names ('u1', 'u2', 'y1', 'y2', etc.) are 
changed so that overlaps in names are avoided, and the new channels are 
added.

If Datk contains channels with user-specified names that are already present 
in the channels of Datj, j<k, these new channels are ignored.

Adding Samples
Dat = [Dat1;Dat2;... ;DatN]

creates an iddata object Dat whose signals are obtained by stacking those of 
Datk on top of each other, that is,

Dat.y = [Dat1.y;Dat2.y; ... DatN.y]

and similarly for the inputs. The Datk objects must all have the same number 
of channels and experiments.
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Parametric Model Estimation
The System Identification Toolbox contains several functions for parametric 
model estimation. They all share the same command structure.

m = function(Data,modstruc)
m = ...
function(Data,modstruc,'Property1',Value1,...'PropertyN',ValueN)

The argument Data is an iddata object that contains the output and input data 
sequences, while modstruc specifies the particular structure of the model to be 
estimated. The resulting estimated model is contained in m. It is a model object 
that stores various information. The model objects will be described in 
“Defining Model Structures” on page 3-39, but for most use of the toolbox, you 
do not have to consider the details of these objects. Just typing the model name

m

will give a concise display of the model. The command

present(m)

gives some more details, while

get(m)

gives a complete list of the model’s properties. The property values can be 
easily retrieved just by dot-referencing. For example,

m.par

retrieves the estimated parameters.

In the function call (...,'Property1', Value1,...,'PropertyN',ValueN) is 
a list of properties that can be assigned to affect the model structure as well as 
the estimation algorithm. A list of typical properties is given at the end of this 
section. The model m is also immediately prepared for displaying and analyzing 
its characteristics as well as for transforming it to other representations, as in

bode(m)
compare(Data,m)
[A,B,C,D, K] = ssdata(m)

See “Examining Models” on page 3-57 for a detailed discussion of these 
possibilities.
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In the following, Data denotes an iddata object that contains the input output 
data as described in the previous section. It can also just contain an output 
signal, that is, a time series.

ARX Models
To estimate the parameters  and  of the ARX model (Equation 3-14), use 
the function arx.

m  = arx(Data,[na nb nk])

Here na, nb, and nk are the corresponding orders and delays in (Equation 3-15) 
that define the exact model structure. The function arx implements the least 
squares estimation method, using QR-factorization for overdetermined linear 
equations.

An alternative is to use the instrumental variable (IV) method described in 
connection with (Equation 3-39). This is obtained with

m = iv4(Data,[na nb nk])

which gives an automatic (and approximately optimal) choice of the filters N 
and M in (Equation 3-39). (See the procedure (15.21)-(15.26) in Ljung (1999).)

Both arx and iv4 are applicable to arbitrary multivariable systems. If you have 
ny outputs and nu inputs, the orders are defined accordingly: na is an ny-by-ny 
matrix whose i-jth entry gives the order of the polynomial that relates past 
values of  to the current value of . In other words, the past values of  up 
to are used when predicting . Similarly, the i-j entries of the 
ny-by-nu matrices nu and nk, respectively, give the order and delay from input 
number j when predicting output number i. (See “Multivariable ARX Models: 
the idarx Model” on page 3-43 and Chapter 4, “Function Reference” for exact 
details.)

AR Models
For a single output signal , the counterpart of the ARX model is the AR 
model.

(3-40)

The arx command also covers this special case:

m = arx(y,na)

ai bi

yj yi yj
yj t na i j,( )–( ) yi t( )

y t( )

A q( )y t( ) e t( )=
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but for scalar signals more options are offered by the command

m = ar(y,na)

which has an option that allows you to choose the algorithm from a group of 
several popular techniques for computing the least squares AR model. Among 
these are Burg’s method, a geometric lattice method, the Yule-Walker 
approach, and a modified covariance method. (See Chapter 4, “Function 
Reference” for details.) The counterpart of the iv4 command is

m = ivar(y,na)

which uses an instrumental variable technique to compute the AR part of a 
time series.

General Polynomial Black-Box Models
Based on the prediction error method (Equation 3-38), you can construct 
models of basically any structure. For the general model (Equation 3-19), there 
is the function 

m = pem(Data,nn)

where nn gives all the orders and delays.

nn = [na nb nc nd nf nk]

The nonzero orders of the model can also be defined as property name/property 
value pairs, as in

m = pem(Data,'na',na,'nb',nb,'nc',nc,'nk',nk)

The input parameters are defined in “Polynomial Representation of Transfer 
Functions” on page 3-11. The pem command covers all cases of black-box linear 
system models. For the common special cases,

m = armax(Data,[na nb nc nk])
m = oe(Data,[nb nf nk])
m = bj(Data,[nb nc nd nf nk])

can be used. These handle the model structures (Equation 3-16), 
(Equation 3-17), and (Equation 3-18), respectively.

All the routines also cover single-output, multiinput systems of the type
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(3-41)

where nb, nf, and nk are row vectors of the same lengths as the number of input 
channels containing each of the orders and delays:

nb = [nb1 ...  nbnu];
nf = [nf1 ...  nfnu];
nk = [nk1 ...  nknu];

These parameter estimation routines require an iterative search for the 
minimum of the function (Equation 3-39). This search uses a special startup 
procedure based on least squares and instrumental variables (the details are 
given as Equation (10.79) in Ljung (1999)). From the initial estimate, a 
Gauss-Newton minimization procedure is carried out until the norm of the 
Gauss-Newton direction is less than a certain tolerance. See Ljung (1999), 
Section 11.2, or Dennis and Schnabel (1983) for details. See also “Optional 
Variables” on page 3-33 on optional variables associated with the search.

The estimation routines also return the estimated covariance matrix of the 
estimated parameter vector as part of m. This reflects the reliability of the 
estimates. The covariance matrix estimate is computed under the assumption 
that it is possible to obtain a true description in the given structure.

You can also start the routines pem, armax, oe, and bj at any initial value mi 
that is a model object, by replacing nn by mi. For example,

m = pem(Data,mi)

While the search is typically initialized using the built-in startup procedure 
giving just orders and delays (as described above), the ability to force a specific 
initial condition is useful in several contexts. Some examples are mentioned in 
“Initial Parameter Values” on page 3-99.

Information about how the minimization progresses can be supplied to the 
MATLAB Command Window by the property trace. See the list in “Properties 
That Apply to Estimation Methods Using Iterative Search for Minimizing a 
Criterion” on page 3-36.

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( ) …
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Process Models
For process control applications, often simple continuous-time models are used, 
consisting of static gain, time constants, and a possible dead time (time delay). 
Such models are estimated by commands of this kind:

m = pem(Data,'P1D')

where P1D indicates one pole (time constant) and a delay. See “Process Models: 
the idproc Model” on page 3-41 and the reference page for Purpose for more 
details.

State-Space Models

Black-Box, Discrete Time Parameterizations
Suppose first that there is no particular knowledge about the internal 
structure of the discrete-time state-space model (Equation 3-15). Any linear 
model is sought. A simple approach is to use

m = pem(Data)

This estimates a state-space model of an order (among 1 to 10) that seems 
reasonable.

To find a black-box model of a certain order n, use

m = pem(Data,n)

To get a plot from which the order can be determined among a list of orders 
nn = [n1,n2,...,nN], use

m = pem(Data,'nx',nn)

All these black-box models are initialized by the subspace method n4sid. To 
obtain the estimate from this routine, use

m = n4sid(Data,n)

Arbitrarily Structured Models in Discrete and Continuous Time
For state-space models of given structure, most of the effort involved relates to 
defining and manipulating the structure. This is discussed in “Structured 
State-Space Models with Free Parameters: the idss Model” on page 3-48. Once 
the structure is defined as ms, you can estimate its parameters with
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m = pem(Data,ms)

When the systems are multioutput, the following criterion is used for the 
minimization:

(3-42)

which is the maximum likelihood criterion for Gaussian noise with unknown 
covariance matrix.

The numerical minimization of the prediction error criterion (Equation 3-39) or 
(Equation 3-42) can be a difficult problem for general model parameterizations. 
The criterion, as a function of the free parameters, can define a complicated 
surface with many local minima, narrow valleys, and so on. This can require 
substantial interaction from the user, in providing reasonable initial 
parameter values, and also by freezing certain parameter values (using the 
property FixedParameters) while allowing others to be free. Note that pem 
easily allows the freezing of any parameters to their current/nominal values. 
You can also directly manipulate the model structure, as described in 
“Structured State-Space Models with Free Parameters: the idss Model” on 
page 3-48. A procedure that is often used for state-space models is to allow the 
noise parameter in the K matrix to be free only when a reasonable model of the 
dynamic part has been obtained. 

Optional Variables
The estimation functions accept a list of property name/property value pairs 
that can affect both the model structure and the estimation algorithm. For 
complete lists of these properties, see algorithm properties, idarx, idmodel, 
idpoly, idproc, idss, and idgrey in Chapter 4, “Function Reference.” Some of 
them are listed here. Note that any property, as well as values that are strings, 
can be entered as any unambiguous, case-insensitive abbreviation, as in

m = pem(Data,mi,'fo','si')

det e t( )eT t( )

t 1=

N

∑
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Note  Algorithm is a property of idmodel. Any algorithm property can be 
separately set as above. If you have a standard algorithm set up that you 
prefer, you can set those properties simultaneously, as in
m = pem(Data,mi,'alg',myalg).

Note  The algorithm properties, like all other model properties, are inherited 
by the resulting model m. If you continue the estimation using m as the initial 
model, all previously set algorithm features will thus apply, unless you specify 
otherwise.

Applying to All Estimation Methods
The following properties apply to all estimation methods:

• Focus
• MaxSize
• FixedParameter

Focus: This property affects the weighting applied to the fit between the model 
and the data. It can be used to ensure that the model approximates the true 
system well over certain frequency intervals. Focus can assume the following 
values:

• Prediction: (Default) The model is determined by minimizing the prediction 
errors. It corresponds to a frequency weighting that is given by the input 
spectrum times the squared inverse noise model. Typically, this favors a 
good fit at high frequencies. From a statistical variance point of view, this is 
the optimal weighting, but then the approximation aspects (bias) of the fit 
are neglected.

• Simulation: Frequency weighting of the transfer function fit is given by the 
input spectrum. Frequency ranges where the input has considerable power 
are thus better described by the model. In other words, the model 
approximation is such that the model will produce as good simulations as 
possible when applied to inputs with the same spectra as used for the 
estimation. For models that have no disturbance model (A=C=D=1 for 
idpoly models and K=0 for idss models) there is no difference between the 
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simulation and prediction values. For models with a disturbance description, 
this is estimated by a prediction error method, keeping the estimated 
transfer function from input to output fixed. The resulting model is 
guaranteed to be stable.

• Stability: The algorithm is modified so that a stable model is guaranteed, 
but the weighting still corresponds to prediction.

• Frequency range for passbands: Focus = [w1 w2] where the interval 
defines a passband (in rad/s) for the signals. By letting focus have several 
rows, you can define filtering with several passbands. The model fit is then 
focused on the passbands defined in this way.

• Any SISO linear filter: The transfer function from input to output is 
determined by a frequency fit with this filter times the input spectrum as 
weighting function. The noise model is determined by a prediction error 
method, keeping the transfer function estimate fixed. To obtain a good model 
fit over a specific frequency range, the filter should thus be chosen with a 
passband over this range. For a model with no disturbance model, the result 
is the same as first applying prefiltering to data using idfilt. The filter can 
be specified as

- Any single-input single-output idmodel

- An ss, tf, or zpk model from the Control System Toolbox

- {A,B,C,D} with the state-space matrices for the filter (notice the curly 
brackets)

- {numerator, denominator} with the transfer function 
numerator/denominator of the filter

MaxSize: No matrix with more than MaxSize elements is formed by the 
algorithm. Instead, for loops are used. MaxSize thus decides the memory/speed 
tradeoff, and can prevent slow use of virtual memory. MaxSize can be any 
positive integer, but the input-output data must contain fewer than MaxSize 
elements. The default value of MaxSize is Auto, which means that the value is 
determined in the M-file idmsize. The user can edit this file to optimize speed 
on a particular computer. See also “Memory/Speed Tradeoffs” on page 3-98.

FixedParameter: A list of parameters that are kept fixed to the nominal/initial 
values and not estimated. This is a vector of integers containing the indices of 
the fixed parameters or a cell array of parameter names. If names are used, 
wildcard entries apply, which can be convenient if you have groups of 
parameters in your model. See the reference page for Algorithm Properties.
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Algorithm Properties That Apply to n4sid, Estimating State-Space Models
The properties that apply to subspace model estimation are

• N4Weight
• N4Horizon

These properties also apply to pem for estimating black-box state-space models, 
because pem is initialized by the n4sid estimate.

N4Weight: This property determines some weighting matrices used in the 
singular-value decomposition that is a central step in the algorithm. Two 
choices are offered: moesp, which corresponds to the MOESP algorithm by 
Verhaegen, and cva, which is the canonical variable algorithm by Larimore. 
The default value is N4Weight = Auto, which gives an automatic choice 
between the two options.

N4Horizon: Determines the prediction horizons forward and backward used by 
the algorithm. This is a row vector with three elements: N4Horizon =[r sy 
su], where r is the maximum forward prediction horizon; that is, the algorithm 
uses up to r-step-ahead predictors. sy is the number of past outputs, and su is 
the number of past inputs that are used for the predictions. See Ljung (1999), 
pages 345 to 348. These numbers can have a substantial influence on the 
quality of the resulting model, and there are no simple rules for choosing them. 
Making N4Horizon a k-by-3 matrix means that each row of N4Horizon is tried 
and the value that gives the best (prediction) fit to data is selected. If you 
specify only one column in N4Horizon, the interpretation is r=sy=su. The 
default choice is N4Horizon = Auto, which uses the Akaike Information 
Criterion (AIC) for the selection of sy and su. See the reference page for n4sid 
for literature references. 

Properties That Apply to Estimation Methods Using Iterative Search for 
Minimizing a Criterion 
The properties that govern the iterative search are

• Trace
• LimitError
• MaxIter
• Tolerance
• SearchDirection
• Advanced

These properties apply to armax, bj, oe, and pem.
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Trace: This property determines the information about the iterative search 
that is provided to the MATLAB Command Window:

LimitError: This variable determines how the criterion is modified from 
quadratic to one that gives linear weight to large errors. Errors larger than 
LimitError times the estimated standard deviation will carry a linear weight 
in the criteria. The default value of LimitError is 1.6. LimitError = 0 disables 
the robustification and leads to a purely quadratic criterion. The standard 
deviation is estimated robustly as the median of the absolute deviations from 
the median, divided by 0.7. (See Equations (15.9) and (15.10) in Ljung (1999).)

MaxIter: The maximum number of iterations performed during the search for 
minimum. The iterations stop when MaxIter is reached or some other stopping 
criterion is satisfied. The default value of MaxIter is 20. Setting MaxIter = 0 
returns the result of the startup procedure. The actual number of iterations 
used is given by the property EstimationInfo.Iterations.

Tolerance: Based on the Gauss-Newton vector computed at the current 
parameter value, an estimate is made of the expected improvement of the 
criterion at the next iteration. When this expected improvement is less than 
Tolerance%, the iterations are stopped. The default value is 0.01.

SearchDirection: The direction along which a line search is performed to find 
a lower value of the criterion function. It can assume the following values:

• gn: The Gauss-Newton direction (inverse of the Hessian times the gradient 
direction). If no improvement is found along this direction, the gradient 
direction is also tried out.

• gns: A regularized version of the Gauss-Newton direction. Eigenvalues less 
than pinvtol of the Hessian are neglected, and the Gauss-Newton direction 
is computed in the remaining subspace. (pinvtol is part of the 'advanced' 
field; see the Algorithm Properties reference page.)

Trace = Off No information is written to the screen.

Trace = On Information about criterion values and the search process is 
given for each iteration.

Trace= Full The current parameter values and the search direction are 
also given (except in the “free” SSParameterization case for 
idss models).
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• lm: The Levenberg-Marquardt method is used. This means that the next 
parameter value is -pinv(H+d*I)*grad from the previous one, where H is the 
Hessian, I is the identity matrix, and grad is the gradient. d is a number that 
is increased until a lower value of the criterion is found.

• Auto: A choice between the above is made in the algorithm. This is the 
default.

One property of the returned model is EstimationInfo, a structure that 
contains useful information about the estimation process. See the 
EstimationInfo reference page for a list of fields. 

Another important option is InitialState. See “Initial State” on page 3-100.

For the spectral analysis estimate, you can compute the frequency functions at 
arbitrary frequencies. If the frequencies are specified in a row vector, w, then 

g = spa(z,M,w)

results in g being computed at these frequencies. You can generate 
logarithmically spaced frequencies using the MATLAB logspace function. For 
example,

w = logspace(-3,pi,128)
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Defining Model Structures
Because the System Identification Toolbox handles a wide variety of model 
structures, it is important that these can be defined in a flexible way. In the 
previous section you saw how models are automatically produced in the right 
form by the various estimation routines, arx, iv4, oe, bj, armax, and pem, if you 
just specify model orders and delays. 

This section describes how model structures and models can be directly 
defined. This might be required, for example, when you are creating a model 
for simulation. It might be necessary to define model structures that are not of 
black-box type, but contain more detailed internal structure, reflecting some 
physical insights into how the system works.

The general way of representing models and model structures in the System 
Identification Toolbox is by various model objects. This section introduces the 
commands (apart from the parametric estimation functions themselves) that 
create these models.

The model objects will contain a number of properties. For any model you can 
type 

get(m)

to see a list of the model’s properties, and

set(m)

to see what the assignable values are. See the get and set reference pages. You 
can also easily retrieve each property value by subreferencing, as in

m.A

and set as in

m.b(3) = 27

See the idmodel reference page for complete property lists. Here only examples 
are given. Note that it is sufficient to use any case-insensitive, unambiguous 
abbreviation of the property names. Also, 'u' is short for 'input' and 'y' is 
short for 'output'.

Polynomial Black-Box Models: the idpoly Model
The general input-output form (Equation 3-19)
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(3-43)

is defined by the five polynomials A(q), B(q), C(q), D(q), and F(q). These are 
represented in the standard MATLAB format for polynomials. Polynomial 
coefficients are stored as row vectors ordered by descending powers. For 
example, the polynomial

is represented as 

A = [1 a1 a2 ... an]

Delays in the system are indicated by leading zeros in the polynomial. For 
example, the ARX model

(3-44)

is represented by the polynomials

A = [1 -1.5 0.7]
B = [0 0 2.5 0.9]

The idpoly representation of (Equation 3-43) is now created by the command

m = idpoly(A,B,C,D,F,lam,T)

lam is the variance of the white noise source , and T is the sampling 
interval. Trailing arguments can be omitted for default values. The system 
(Equation 3-44) can, for example, be represented by

m = idpoly([1 -1.5 0.7],[0 0 2.5 0.9])

In the multiinput case (Equation 3-41), B and F are matrices whose row number 
k corresponds to the kth input. For time series (no input signal), set B = [] and 
F = []. (See “Time-Series Modeling” on page 3-93 for more details on time 
series.) You can also use the command idpoly to define continuous-time 
systems. See the idpoly reference page for details.

A q( )y t( ) B q( )
F q( )
------------u t nk–( ) C q( )

D q( )
-------------e t( )+=

A q( ) 1 a1q 1– a2q 2– … anq n–+ + + +=

B q( )

y t( ) 1.5y t 1–( )– 0.7y t 2–( )+ 2.5u t 2–( ) 0.9u t 3–( )+=

e t( )
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When m is defined, the polynomials and their orders can be easily retrieved and 
changed, as in

m.a % for the A-polynomial
roots(m.a)
m.a(3)=0.95

Process Models: the idproc Model
A process model is a continuous-time model that is characterized by 

• Static gain Kp

• One or several time constants Tpk (called Tw and  for time constant and 
damping in the complex case)

• A possible process zero Tz

• A possible time delay (dead time) Td

• A possible enforced integration

This means that the models are transfer functions of the character

(3-45)

To name the different process models of interest, acronyms are used, built up 
from the letters

• P for process model

• 0, 1, 2 or 3, depending on the number of poles

• D when a time-delay term  is present

• Z when a process zero (numerator term) is present

• U when the poles are possibly underdamped (complex-valued poles)

• I when an integration is enforced

To illustrate this, for example,

• P1D for Equation 3-45

• P2ZU for

ζ

G s( )
Kp

1 sTp1+
----------------------e

sTd–
=

e
sTd–
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(3-46)

• P0ID for

(3-47)

• P3Z for 

(3-48)

To define an idproc model, use the constructor

m = idproc('P1D')

where the acronym defines the character of the model. To estimate a process 
model from data, use

me = pem(data,m)

for an idproc model m, or more simply

me = pem(data,'P1D')

See the reference page for idproc. The transfer function coefficients are 
structures of the following kind: The parameters are called Kp, Tp1, Tp2, Tp3, 
Tw, Zeta, Tz, and Td, as shown above. You retrieve them by

Kp = get(m,'Kp') or m.Kp

They are structures with the following fields:

• status: Assumes the values 'estimate', 'fixed', or 'zero' with obvious 
interpretation

• min: Minimum value that this parameter is bounded from below by

• max: Maximum value that this parameter is bounded from below by

• value: Numerical value of the parameter

For models with several inputs, status is a cell array, and min, max, and value 
are vectors of length equal to the number of inputs. Similarly, the acronym will 

G s( )
Kp 1 sTz+( )

1 2sζTw sTw( )2+ +
-----------------------------------------------------=

G s( )
Kp
s

-------e
sTd–

=

G s( )
Kp 1 sTz+( )

1 sTp1+( ) 1 sTp2+( ) 1 sTp3+( )
-----------------------------------------------------------------------------------=
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be a cell array indicating the characters of the transfer functions associated 
with the different inputs, as in {'P1D','P2ZI'}.

The values, status, and bounds for the parameters can be set by

set(m,'Kp',KC) or m.Kp = KC or m.Kp.value = 12 or m.Kp.status = 
'fixed'

where KC is a structure with the correct fields. An extended syntax allows

m.Kp = 12 or m.Kp = 'fixed' or m.Kp = {'max',12}

for setting values (numerical values) and status (strings).

Similarly, at estimation time you can use

me = pem(data,'p1d','Kp',15)

to initialize the iterative search in this value, and

me = pem(data,'p1d','kp','fix','kp',12)

to fix the value of Kp to 12, and

me = pem(data,'p2z','kp',{'max',3},'kp',{'max',4})

to constrain the value of Kp to lie between 3 and 4.

Multivariable ARX Models: the idarx Model
A multivariable ARX model with nu inputs and ny outputs is given by

(3-49)

Here A(q) is an ny-by-ny matrix whose entries are polynomials in the delay 
operator q-1. You can represent it as

(3-50)

 as well as the matrix

A q( )y t( ) B q( )u t( ) e t( )+=

A q( ) Iny A1q 1– … Anaq na–+ + +=
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(3-51)

where the entries  are polynomials in the delay operator .

(3-52)

This polynomial describes how old values of output number j affect output 
number k. Here is the Kronecker-delta; it equals 1 when ; otherwise, 
it is 0. Similarly,  is an ny-by-nu matrix

(3-53)

or

(3-54)

with

The delay from input number j to output number k is . To link with the 
structure definition in terms of na, nb, and nk in the arx and iv4 commands, 
note that na is a matrix whose kj element is , while the kj elements of nb 
and nk are  and , respectively.

The idarx representation of the model (Equation 3-49) can be created by

m = idarx(A,B)

where A and B are 3-D arrays of dimensions ny-by-ny-by-(na+1) and 
ny-by-nu-by-(nb+1), respectively, that define the matrix polynomials 
(Equation 3-50) and (Equation 3-53).

A q( )

a11 q( ) a12 q( ) … a1ny q( )

a21 q( ) a22 q( ) … a2ny q( )

… … … …
any1 q( ) any2 q( ) … anyny q( )

=  

akj q 1–

akj q( ) δkj akj
1 q 1– … akj

nakjq
nakj–

+ + +=

δkj k j=
B q( )

B q( ) B0 B1q 1– …Bnbq nb–+ +=

B q( )

b11 q( ) b12 q( ) … b1nu q( )

b21 q( ) b22 q( ) … b2nu q( )

… … … …
bny1 q( ) bny2 q( ) … bnynu q( )

=

bkj q( ) bkj
1 q

nkkj–
… bkj

nbkjq
nkkj nbkj– 1+–

+ +=

nkkj

nakj
nbkj nkkj
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A(:,:,k+1) = Ak 
B(:,:,k+1) = Bk 

Note that A(:,:,1) is always the identity matrix, and that leading zero 
coefficients in B matrices define the delays.

Consider the following system with two outputs and three inputs:

which in matrix notation can be written as

This system is defined and simulated for a certain input u, and then estimated 
in the correct ARX structure by the following commands:

A(:,:,1) = eye(2);
A(:,:,2) = [-1.5 0.4; -0.2 0];
A(:,:,3) = [0.7 0 ; 0.01 -0.7];
B(:,:,1) = [0 0.4 0;1 0 0];
B(:,:,2) = [0 -0.1 0;0 0 3];
B(:,:,3) = [0 0.15 0;0 0 4];
B(:,:,4) = [0 0 0;0 0 0];
B(:,:,5) = [0.2 0 0;0 2 0];
B(:,:,6) = [0.3 0 0;0 0 0];
m0 = idarx(A,B);
u = iddata([], idinput([200,3]));
e = iddata([], randn(200,2));
y = sim(m0, [u e]);

y1 t( ) 1.5y1 t 1–( )– 0.4y2 t 1–( ) 0.7y1 t 2–( )+ + =

0.2u1 t 4–( ) 0.3u1 t 5–( ) 0.4u2 t( ) 0.1u2 t 1–( )– 0.15u2 t 2–( ) e1 t( )+ + + +

y2 t( ) 0.2y1 t 1–( )– 0.7y2 t 2–( )– 0.01y1 t 2–( )+ =

u1 t( ) 2u2 t 4–( ) 3u3 t 1–( ) 4u3 t 2–( ) e2 t( )+ + + +

y t( ) 1.5– 0.4
0.2– 0

y t 1–( ) 0.7 0
0.01 0.7–

y t 2–( )+ + 0 0.4 0
1 0 0

u t( ) +=

0 0.1– 0
0 0 3

u t 1–( ) 0 0.15 0
0 0 4

u t 2–( ) 0 0 0
0 0 0

u t 3–( )+ + +

0.2 0 0
0 2 0

u t 4–( ) 0.3 0 0
0 0 0

u t 5–( )+



3 Tutorial

3-46

na = [2 1;2 2];
nb = [2 3 0;1 1 2];
nk = [4 0 0;0 4 1];
me = arx([y u],[na nb nk])
me.a % The estimated A-polynomial

Black-Box State-Space Models: the idss Model
The basic state-space models are the following ones. (See also “State-Space 
Models” on page 3-32.)

Discrete-Time Innovations Form

(3-55)

Here T is the sampling interval,  is the input at time instant , and 
 is the output at time . (See Ljung (1999), page 99.)

System Dynamics Expressed in Continuous Time

(3-56)

(See Ljung (1999), page 93.) It is often easier to define a parameterized 
state-space model in continuous time because physical laws are most often 
described in terms of differential equations. The matrices F, G, H, and D 
contain elements with physical significance (for example, material constants). 
The numerical values of these might or might not be known. To estimate 
unknown parameters based on sampled data (assuming T is the sampling 
interval), first transform (Equation 3-56) to (Equation 3-55) using the formulas 
of (Equation 3-27). The value of the Kalman gain matrix K in (Equation 3-55) 
or  in (Equation 3-56) depends on the assumed character of the additive 
noises  and  in (Equation 3-25) and its continuous-time counterpart. 
Disregard that link and view K in (Equation 3-55) (or  in (Equation 3-56)) as 
the basic tool to model the disturbance properties. This gives the directly 
parameterized innovations form. (See Ljung (1999), page 99.) If the internal 
noise structure is important, you could use user-defined gray-box structures 
(the idgrey object) as in “Parameterized Disturbance Models” on page 3-53.

x kT T+( ) Ax kT( ) Bu kT( ) Ke kT( )+ += a( )
y kT( ) Cx kT( ) Du kT( ) e kT( )+ += b( )

x 0( ) x0= c( )

u kT( ) kT
y kT( ) kT

x· t( ) Fx t( ) Gu t( ) K̃w t( )+ +=
y t( ) Hx t( ) Du t( ) w t( )+ +=
x 0( ) x0=

K~

w t( ) e t( )
K~
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You can put the discrete-time model (Equation 3-55) into the idss model by

m = idss(A,B,C,D,K,X0,'Ts',T)

For the continuous-time model (Equation 3-56), use

m = idss(F,G,H,D,Kt,X0,'Ts',0)

Setting the sampling interval Ts to zero thus means a continuous-time model. 
You can now use the model m for simulation and examine it using the various 
commands. The parameterization of the matrices is by default free; that is, any 
elements in the matrices are freely adjustable by the estimation routines. The 
parameters are adjusted to data by 

me = pem(Data,m)

The iterative search for the best fit is then initialized in the nominal matrices 
A, B, C, D, K, X0. Note that the command me = pem(Data,4), which just defines 
the model order, first estimates a starting model m (using n4sid), from which 
the search is initialized.

In this free parameterization, you can decide how to deal with the disturbance 
model matrix K. Letting

m.DisturbanceModel = 'None'

(rather than 'Estimate') fixes the K matrix to zero, thereby creating an 
output-error model.

Letting

m.InitialState ='zero'

(rather than 'Estimate') sets the initial state vector x0 to zero. 

The property nk determines the delays from the different inputs just as for 
idpoly models. Thus

m.nk = [0,0,...,0]

(no delays) means that all elements of the D matrix should be estimated, while

m.nk = [1,1,..,1]

fixes the D matrix to zero.

With the parameterization of A, B, and C being completely free, a basis for the 
state-space realization is automatically selected to give well-conditioned 
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calculations. An alternative is to specify an observer canonical form for A, B, C 
by

m.sspar = 'Canonical'

(rather than 'Free'). This is still a black-box model, because the canonical 
form covers all models of a certain order. The structure modifications can all be 
combined at the estimation call

me = pem(Data,m,'sspar','can','dist','none','ini','z')

which is the same as

set(m,'sspar','can','dist','none','ini','z')
me = pem(Data,m);

Structured State-Space Models with Free 
Parameters: the idss Model
The System Identification Toolbox allows you to define arbitrary 
parameterizations of the matrices in (Equation 3-55) or (Equation 3-56). To 
define the structure, so-called structure matrices are used. These are shadow 
matrices to A, B, C, D, K, and X0, have the same sizes, and coincide with these at 
all matrix elements that are known. The structure matrices are denoted by As, 
Bs, Cs, Ds, Ks, and X0s and have the entry NaN at those elements that 
correspond to unknown parameters to be estimated.

For example,

m.As = [NaN 0;0 NaN]

sets the structure matrix for A, called As, to a diagonal matrix, where the 
diagonal elements are freely adjustable. Defining

m.A = [2 0; 0 3]

sets the nominal/initial values of these diagonal elements to 2 and 3, 
respectively. 

Example 1:  A Discrete-Time Structure. Consider the discrete-time model
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with five unknown parameters , i = 1,...,5. Suppose the nominal/initial 
values of these parameters are -1, 2, 3, 4, and 5. This structure is then defined 
by

m = idss([1, -1;0, 1],[2;3],[1,0],0,[4;5])
m.As = [1, NaN; 0 ,1];
m.Bs = [NaN;NaN];
m.Cs = [1, 0];
m.Ds = 0;
m.Ks = [NaN;NaN];
m.x0s = [0;0];

The definition thus follows in two steps. First the nominal model is defined. 
Then the structure (known and unknown parameter values) is defined by the 
structure matrices As, Bs, etc. The command setstruc makes the above syntax 
more efficient.

Example 2:  A Continuous-Time Model Structure. Consider the following model 
structure:

This corresponds to an electrical motor, where  is the angular 
position of the motor shaft and  is the angular velocity. The 

x t 1+( ) 1 θ1

0 1
x t( )

θ2

θ3

u t( )
θ4

θ5

e t( )+ +=

y t( ) 1 0 x t( ) e t( )+=

x 0( ) 0
0

=

θi

x· t( ) 0 1
0 θ1

x t( ) 0
θ2

u t( )+=

y t( ) 1 0
0 1

x t( ) e t( )+=

x 0( ) θ3

0
=

y1 t( ) x1 t( )=
y2 t( ) x2 t( )=
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parameter  is the inverse time constant of the motor and  is the 
static gain from the input to the angular velocity. (See Example 4.1 in Ljung 
(1999).) The motor is at rest at time 0 but at an unknown angular position. 
Suppose that  is around -1 and  is around 0.25. If you also know that the 
variance of the errors in the position measurement is 0.01 and in the angular 
velocity measurements is 0.1, you can then define an idss model using

m = idss([0 1;0 ... 
-1],[0;0.25],eye(2),[0;0],zeros(2,2),[0;0],'Ts',0)

m.as = [0 1; 0 NaN]
m.bs = [0 ;NaN]
m.cs = m.c
m.ds = m.d
m.ks = m.k
m.x0s = [NaN;0]
m.noisevar = [0.01 0; 0 0.1]

You can now use the structure m to estimate the unknown parameters  from 
observed data

Data = iddata([y1 y2], u, 0.1)

by

model = pem(Data,m)

The iterative search for minimum is then initialized at the parameters in the 
nominal model m. The continuous-time model is automatically sampled to agree 
with the sampling interval of the data. You can also use the structure to 
simulate the system above with sampling interval T = 0.1 for input u and noise 
realization e.

e = randn(300,2)
u = idinput(300);
simdat = iddata([],[u e],'Ts',0.1);
y = sim(m,simdat) % The continuous system will automatically be 

% sampled using Ts = 0.1.

The nominal parameter values are used, and the noise sequence is scaled 
according to the matrix m.noisevar.

When estimating models, you can try a number of neighboring structures, such 
as “What happens if I fix this parameter to a certain value?” or “What happens 
if I free these parameters?” This is easily handled by the structure matrices As, 

θ1– θ2 θ1⁄–

θ1 θ2

θi
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Bs, etc. For example, to free the parameter x2(0) (perhaps the motor wasn’t at 
rest after all), you can use

model = pem(Data,m,'x0s',[NaN;NaN])

To manipulate initial conditions, the function init is also useful.

State-Space Models with Coupled Parameters: the 
idgrey Model
In some situations you might want the unknown parameters in the matrices in 
(Equation 3-55) or (Equation 3-56) to be linked to each other. Then the NaN 
feature is not sufficient to describe these links. Instead you need to do some 
gray-box modeling and write an M-file that describes the structure. The format 
is

[A,B,C,D,K,x0] = mymfile(par,T,aux);

where mymfile is the user-defined name for the M-file, par contains the 
parameters as a column vector, T is the sampling interval, and aux contains 
auxiliary variables. The latter variables are used to house options, so that you 
can try out some different cases without your having to edit the M-file. The 
matrices A, B, C, D, K, and x0 refer either to the continuous-time description 
(Equation 3-56) or to the discrete-time description (Equation 3-55). When a 
continuous-time description is fitted to sampled data, the estimation routines 
perform the necessary sampling of the model. To obtain the same structure as 
in “Example 2: A Continuous-Time Model Structure” you can do the following:

function [A,B,C,D,K,x0] = mymfile(par,T,aux)
A = [0 1; 0 par(1)]; 
B = [0;par(2)];
C = eye(2);
D = zeros(2,2);
K = zeros(2,1);
x0 =[par(3);0];

Once you have written the M-file, the idgrey model m is defined by

m = idgrey('mymfile',par,'c',aux);

where par contains the nominal (initial) values of the corresponding entries in 
the structure. 'c' signals that the underlying parameterization is continuous 
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time. aux contains the values of the auxiliary parameters. Note that T and aux 
must be given as input arguments, even if they are not used by the code.

From here on, estimate models and evaluate results as for any other model 
structure. Some further examples of user-defined model structures are given 
below.

Some Examples of idgrey Model Structures
With user-defined structures, you have complete freedom in the choice of 
models of linear systems. This section gives two examples of such structures.

Heat Diffusion. Consider a system driven by the heat-diffusion equation (see also 
Example 4.3 in Ljung (1999)). 

This is a metal rod with a heat-diffusion coefficient , which is insulated at the 
near end and heated by the power u (W) at the far end. The output of the 
system is the temperature at the near end. This system is described by a partial 
differential equation in time and space. Replacing the space-second derivative 
by a corresponding difference approximation gives a continuous-time 
state-space model (Equation 3-56), where the dimension of x depends on the 
grid size in space used in the approximation. It is also desirable to be able to 
work with different grid sizes without having to edit the model file. This is 
described by the following M-file:

function [A,B,C,D,K,x0] = heatd(pars,T,aux)
Ngrid = aux(1); % Number of points in the space-discretization
L = aux(2); % Length of the rod
temp = aux(3); % Assuming uniform initial temperature of the rod
deltaL = L/Ngrid;    % Space interval
kappa = pars(1); % The heat-diffusion coefficient
htf = pars(2); % Heat transfer coefficient at far end of rod
A = zeros(Ngrid,Ngrid);
for kk = 2:Ngrid-1
A(kk,kk-1) = 1;
A(kk,kk) = -2;
A(kk,kk+1) = 1;
end
A(1,1) = -1; A(1,2) = 1; % Near end of rod insulated
A(Ngrid,Ngrid-1) = 1;
A(Ngrid,Ngrid) = -1;
A = A∗kappa/deltaL/deltaL;

κ
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B = zeros(Ngrid,1); 
B(Ngrid,1) = htf/deltaL;
C = zeros(1,Ngrid);
C(1,1) = 1;
D = 0;
K = zeros(Ngrid,1);
x0 = temp∗ones(Ngrid,1);

You can then define the model by

m = idgrey('heatd',[0.27 1],'c',[10,1,22])

for a tenth-order approximation of a heat rod one meter in length with an 
initial temperature of 22 degrees. The initial estimate of the heat conductivity 
is 0.27, and of the heat transfer coefficient is 1. 

The model parameters are estimated by

me = pem(Data,m)

If you would like to try a finer grid, that is, take Ngrid larger, you can do this 
easily with

me = pem(Data,m,'Filearg',[20,1,22])

Parameterized Disturbance Models. Consider a discrete-time model

where w and e are independent white noises with covariance matrices R1 and 
R2, respectively. Suppose that you know the variance of the measurement 
noise R2, and that only the first component of  is nonzero. This can be 
handled by the following M-file:

function [A,B,C,D,K,x0] = mynoise(par,T,aux)
R2 = aux(1); % The assumed known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
D = 0;
R1 = [par(5) 0;0 0];
K = A∗dlqe(A,eye(2),C,R1,R2); % From the Control System Toolbox
x0 = [0;0];

x t 1+( ) Ax t( ) Bu t( ) w t( )+ +=
y t( ) Cx t( ) e t( )+=

w t( )
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State-Space Structures: Initial Values and Numerical 
Derivatives
For a structured state-space model, it is sometimes difficult to find good initial 
parameter values at which to start the numerical search for a minimum of 
(Equation 3-38). It is always best to use physical insight, whenever possible, to 
suggest such values. For random initialization, the command init is useful. 
Because there is always a risk that the numerical minimization can get stuck 
in a local minimum, it is advisable to try several different initialization values 
for .

In the search for the minimum, the gradient of the prediction errors  with 
respect to the parameters is computed by numerical differentiation. The step 
size is determined by the M-file nuderst. In its default version, the step size is 
simply  times the absolute value of the parameter in question (or the 
number  if this is larger). When the model structure contains parameters 
with different orders of magnitude, try to scale the variables so that the 
parameters are all roughly the same magnitude. You might need to edit the 
M-file nuderst to address the problem of suitable step sizes for numerical 
differentiation. 

Estimating Continuous-Time Models: General 
Remarks
In many cases you want to estimate a continuous-time model. The System 
Identification Toolbox gives several ways for you to do this:

• Estimate a discrete-time model, and convert it to continuous time, using the 
command d2c. Note that the estimated model contains information about the 
input intersample properties of the estimation data, and the conversion, by 
default, will be in accordance with this information. If a polynomial type 
model (idpoly model) is estimated, you can choose the number of numerator 
and denominator coefficients freely for the discrete-time model. Note, 
however, that the transformed continuous-time model generically has a 
numerator order that is one less than (or equal to, if nk = 0) the denominator 
order, regardless of the discrete-time orders.

m = oe(data,[3 4 1]);
mc = d2c(m)

• Use continuous-time frequency-domain data and directly estimate an idpoly 
continuous-time model. Then you can choose the numerator and 

θ

e t( )

10 4–

10 7–



Defining Model Structures

3-55

denominator orders freely. In the case below it is assumed that the data is 
sampled so fast (or that the input is band limited) that frequencies above the 
Nyquist frequency in the continuous-time input are negligible.

DF = fft(data)
DF.ts = 0 (% treating the frequency data as continuous time)
m = oe(DF,[nb nf])

Here nb is the number of numerator coefficients and nf the number of 
denominator coefficients. The delay order, nk, has no meaning for 
continuous-time OE models, and should be omitted. This means that for 
nb = 2, nf = 4 the model is

(3-57)

If the data is sampled fast, it is usually a good idea to apply some lowpass 
filtering before making the fit. This is most easily done with the focus 
property.

m = oe(DF,[nb nf],'focus',[0 10]) 

meaning that only data in the frequency interval between 0 and 10 rad/s is 
used in the model estimation.

Of course, you can also use continuous-time frequency-domain data to 
estimate continuous-time state-space models.

m = pem(DF,n)

This gives an nth-order continuous-time state-space model with no direct 
term (D matrix = 0). To include a D matrix, indicate that the relative degree 
nk is zero.
m = pem(DF,n,'nk',0)

• Use continuous-time process models as described in “Process Models: the 
idproc Model” on page 3-41.
m = pem(data,'P1D')

• Build a continuous-time idgrey model as described in “State-Space Models 
with Coupled Parameters: the idgrey Model” on page 3-51, and in Example 
3.3 on page 3-52.

G s( )
b1s b2+

s4 f1s3 f2s2 f3s f4+ + + +
-----------------------------------------------------------------=
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• Build a continuous-time idss model either in structured or in free form as 
described in “Black-Box State-Space Models: the idss Model” on page 3-46.

In the latter three cases you can directly estimate the continuous-time model 
from discrete-time data (or continuous-time frequency-domain data) without 
further information, because the iddata object contains all relevant 
information to adjust the model to the data.

m = pem(Data,mi)

If you create a state-space model at the same time as you estimate it, you 
must, however, indicate whether you want to obtain a continuous-time 
model.

m = n4sid(Data,5,'Ts',0)
m = pem(Data,5,'Ts',0,'ss','can')

In the pem example, the ('ss','can') property name/property value pair 
means that the state-space parameterization ('SSparameterization') is 
'Canonical'. Estimation of freely parameterized continuous-time 
state-space models is not supported.
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Examining Models
Once you have estimated a model, you need to investigate its properties. You 
have to simulate it, test its predictions, and compute its poles and zeros and so 
on. You thus have to transform the model to various ways of representing and 
presenting it. This section deals with how this is done. The following topics are 
covered:

• Parametric models: basic use, accessing properties, simulation, and 
prediction. Also manipulating channels, in particular the noise input 
channels.

• Frequency-domain models

• Graphing model properties

• Transformations to other representations

• Transformations between continuous and discrete time

Parametric Models: idmodel and Its Children
idmodel is an object that you do not deal with directly. It contains all the 
common properties of the model objects idarx, idgrey, idpoly, idproc, and 
idss, which are returned by the different estimation routines.

Basic Use
If you just estimate models from data, the model objects should be transparent. 
All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m gives a brief 
account of the model. present(m) also gives information about the 
uncertainties of the estimated parameters. get(m) gives a complete list of 
model properties.

Most of the interesting properties can be directly accessed by subreferencing.

m.a
m.da

See the property list obtained by get(m), as well as the property lists of idgrey, 
idarx, idpoly, idproc, and idss, in Chapter 4, “Function Reference,” for more 
details on this.
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You can directly examine and display the characteristics of the model m by 
using commands like impulse, step, bode, nyquist, and pzmap. Use commands 
like compare and resid to assess the quality of the model. If you have the 
Control System Toolbox, typing view(m) gives you access to various display 
functions. More details about this are given below.

To extract state-space matrices, transfer function polynomials, etc., you can 
use these commands:

arxdata, polydata, tfdata, ssdata, zpkdata

To compute the frequency response of the model, you can use idfrd and 
freqresp.

Simulation and Prediction
Any idmodel m can be simulated with 

y = sim(m,Data)

where Data is an iddata object with just input channels. 

Data = iddata([ ],[u v])

The number of input channels must either be equal to the number of measured 
input channels in m, in which case a noise-free simulation is obtained, or equal 
to the sum of the number of input and output channels in m. In the latter case 
the last input signals (v) are interpreted as white noise. They are then scaled 
by the NoiseVariance matrix of m and added to the output via the disturbance 
model 

where the matrix L is given from the noise covariance  by .

L=chol(m.NoiseVariance)'

The output is returned as an iddata object with just output channels. Here is 
a typical string of commands.

A = [1 -1.5 0.7];
B = [0 1 0.5];
m0 = idpoly(A,B,[1 -1 0.2]);
u = iddata([],idinput(400,'rbs',[0 0.3])); 

y Gu He+=
e Lv=

Λ Λ LLT=
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v= iddata([],randn(400,1));
y = sim(m0, [u v]);
plot(y)

The inverse model (Equation 3-38), which computes the prediction errors from 
given input-output data, is simulated with

e = pe(m,[y u])

To compute the k-step-ahead prediction of the output signal based on a model 
m, the procedure is as follows:

yhat = predict(m,[y u],k)

The predicted value  is computed using the information in  up to 
time  and information in  up to time . The actual way that 
the information in past outputs is used depends on the disturbance model in m. 
For example, an output-error model (that is, H = 1 in (Equation 3-10)) 
maintains that there is no information in past outputs; therefore, predictions 
and simulations coincide.

predict can evaluate how well a time-series model is capable of predicting 
future values of the data. In this example y is the original series of monthly 
sales figures. A model is estimated based on the first half, and then its ability 
to predict half a year ahead is tested on the second half of the observations.

plot(y)
y1 = y(1:48), y2 = y(49:96)
m4 = ar(y1,4)
yhat = predict(m4,y2,6)
plot(y2,yhat)

The command compare is useful for any comparisons involving sim and 
predict.

Dealing with Input and Output Channels
For multivariable models, you construct submodels each containing a subset of 
inputs and outputs by simple subreferencing. The outputs and input channels 
can be referenced according to

m(outputs,inputs)

ŷ t t k–( ) u s( )
s t= y s( ) s t k–=
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Use the colon (:) to denote all channels and the empty matrix ([ ]) to denote no 
channels. The channels can be referenced by number or by name. For several 
names, you must use a cell array.

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])

Thus m3 is the model obtained from m by considering the transfer functions from 
input numbers 1 and 4 (with input names 'power' and 'speed') to output 
number 3 (with name 'position').

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when you want a plot of just some 
channels.

Noise Channels
The estimated models have two kinds of input channels: the measured inputs 
u and the noise inputs e. For a general linear model m, 

(3-58)

where u is the nu-dimensional vector of measured input channels and e is the 
ny-dimensional vector of noise channels. The covariance matrix of e is given by 
the property 'NoiseVariance'. Occasionally this matrix is written in 
factored form:

This means that e can be written as

where v is white noise with identity covariance matrix (independent noise 
sources with unit variances).

y t( ) G q( )u t( ) H q( )e t( )+=

Λ

Λ LLT=

e Lv=
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If m is a time series (nu = 0), G is empty and the model is given by

(3-59)

For the model m in (Equation 3-58), the restriction to the transfer function 
matrix G is obtained by 

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input. m2 is 
given by (Equation 3-59).

For a system with measured inputs, bode, step, and many other 
transformation and display functions just deal with the transfer function 
matrix G. To obtain or graph the properties of the disturbance model H, it is 
therefore important to make the transformations m('n'). For example,

bode(m('n'))

will plot the additive noise spectra according to the model m, while

bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it might be useful to convert 
the noise channels to measured channels, using the command noisecnv:

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and noise 
sources e, being treated as measured signals. That is, m3 is a model from u and 
e to y, describing the transfer functions G and H. The information about the 
variance of the innovations e is then lost. For example, studying the step 
response from the noise channels does not take into consideration how large 
the noise contributions actually are.

To include that information, you should normalize e first, , so that  
becomes white noise with an identity covariance matrix.

m4 = noisecnv(m,'Norm')

y t( ) H q( )e t( )=

e Lv= v
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This creates a model m4 with  and  treated as measured signals.

For example, the step responses from v to y will now also reflect the typical size 
of the disturbance influence because of the scaling by L. In both these cases, 
the previous noise sources that have become regular inputs will automatically 
get input names that are related to the corresponding output. The 
unnormalized noise sources e have names like 'e@y1' (noise e at output 
channel with name y1), while the normalized sources v are called 'v@y1'.

Retrieving Transfer Functions
The functions that retrieve transfer function properties, ssdata, tfdata, and 
zpkdata, will thus work as follows for a model (Equation 3-58) with measured 
inputs. (fcn is any of ssdata, tfdata, or zpkdata.)

• fcn(m) returns the properties of G (ny outputs and nu inputs).

• fcn(m('n')) returns the properties of the transfer function H (ny outputs 
and ny inputs).

• fcn(noisecnv(m)) returns the properties of the transfer function [G H] (ny 
outputs and ny+nu inputs).

• fcn(noisecnv(m,'Norm')) returns the properties of the transfer function 
[G HL} (ny outputs and ny+nu inputs). Analogously,
fcn(noisecnv(m('n'),'Norm')) 

returns the properties of the transfer function HL (ny outputs and ny inputs).

• If m is a time-series model, fcn(m) returns the properties of H, while 
fcn(noisecnv(m,'Norm')) 

returns the properties of HL.

Note that the estimated covariance matrix NoiseVariance itself is uncertain. 
This means that the uncertainty information about H is different from that of 
HL.

idmodel Properties
See the idmodel reference page for a complete list of idmodel properties.

u v

y t( ) G q( )u t( ) H q( )Lv t( )+ G HL
u
v

= =
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Adding Channels
m = [m1,m2,...,mN]

creates an idmodel object m, consisting of all the input channels in m1,... mN. 
The output channels of mk must be the same. Analogously,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1, m2,..., 
mN. The input channels of mk must all be the same.

If you have the Control System Toolbox, you can create interconnections 
between idmodels, like G1+G2, G1*G2, append(G1,G2), feedback(G1,G2), etc., 
just as for LTI objects. However, covariance information is typically lost.

Frequency Function Format: the idfrd Model
Frequency functions and spectra are stored as an idfrd (Identified Frequency 
Response Data) model object (which is not a child of idmodel). This model 
format is used by spa,spafdr, and etfe to deliver their results. Moreover, any 
idmodel can be transformed to an idfrd object.

The frequency function and the disturbance spectrum corresponding to an 
idmodel m are computed by

h = idfrd(m)

This gives G and  in (Equation 3-11) along with their estimated covariances, 
which are translated from the covariance matrix of the estimated parameters. 
The frequencies can be specified as in h = idfrd(m,w), but otherwise a default 
choice of frequencies (based on the dynamics of m) is used. If m corresponds to a 
continuous-time model, the frequency functions are computed accordingly.

Φ
ˆ

v
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You retrieve the functions using h.ResponseData, h.CovarianceData, 
h.SpectrumData, and h.NoiseCovariance, or any case-insensitive 
abbreviation of the names. The frequency vector is contained in h.Frequency.

In addition, you can define an idfrd model directly from the frequency 
functions. See the idfrd reference page, which also contains a list of idfrd 
properties. The channels of an idfrd model can be manipulated analogously to 
idmodels.

An alternative is to compute the response functions without storing them as 
idfrd objects:

[Response,Frequency,Covariance] = freqresp(m)

Graphs of Model Properties
There are several commands in the toolbox for graphing model characteristics.

• bode
• compare
• ffplot
• impulse
• nyquist
• pzmap
• step

They all have the same basic syntax. To look at one model, use

command(Model)

where command is any of the functions listed above.

command(Mod1,Mod2,...,ModN)

shows a comparison of several models. Modk can be any idmodel models. They 
can be used with any of the Control System Toolbox’s LTI models. For some 
commands Modk can also be idfrd and iddata objects. For multivariable 
models, the plots are grouped so that each input/output channel (for all models) 
is plotted together. The InputName and OutputName properties of the models 
are used for this. The number of channels need not be the same in the different 
models, which is quite useful when you are trying to find a good model of a 
multivariable system.

command(Mod1,PlotStyle1,...,ModN,PlotStyleN)
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allows you to define colors, line styles, and markers associated with the 
different models. PlotStyle takes values such as 'b' (for blue), 'b:' (for a blue 
dotted line), or 'b*-' (for a blue solid line with the points marked by a star). 
This is the same as for the usual plot command.

To show the uncertainty of the model characteristics, use

command(Mod1,...,ModN,'sd',SD)

The plot will show dash-dotted lines that mark a confidence region around the 
nominal model corresponding to SD standard deviations (for the Gaussian 
distribution). This region is computed using the estimated covariance matrix 
for the estimated parameters.

command(Mod1,...,ModN,'sd',SD,'fill')

shows the uncertainty region as a filled region instead.

The commands have some further options to select time or frequency ranges. 
See the detailed descriptions in Chapter 4, “Function Reference.”

If Model contains measured input channels, the plot shows just the transfer 
functions from these measured inputs to the outputs, that is, G in 
(Equation 3-58). To graph the response from the noise sources, use

command(Model('n'))

For the frequency-response graphs, this shows the additive disturbance 
spectra, that is, the spectra of the signal H(q)e(t) in Equation 3-58, so that the 
properties of the noise source e are included in the plot.

For the other graphs, the properties of the transfer function H are shown. That 
is, no noise normalization is done. The same is true if Model is a time series and 
has no measured input channels. That means that, for example, step shows 
the step response of the transfer function H, without accounting for the size 
(covariance matrix) of e. To include such effects, the disturbances should first 
be converted to normalized noise sources, using the command noisecnv. See 
“Noise Channels” on page 3-60.

Model Output
An important and visually suggestive plot is to compare the measured output 
signal with the models’ simulated or predicted outputs. You do this using

compare(Data,model)
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The input signal in Data is used by the models to simulate the output. This 
simulated output is shown together with the measured output, which reveals 
what features in the data the model can and cannot reproduce. A legend shows 
the fit between the signals, in terms of how much of the output variation is 
reproduced by the models. 

Frequency Response
Three functions offer graphic display of the frequency functions and spectra: 
bode, ffplot, and nyquist. 

bode(G)

plots the Bode diagram of G (logarithmic scales and frequencies in rad/s). If G is 
a spectrum, only an amplitude plot (the power spectrum) is given. Here G can 
be any idmodel or idfrd object. 

The command ffplot has the same syntax as bode but works with linear 
frequency scales and Hertz as the unit. The command nyquist also has the 
same syntax, but produces Nyquist plots, that is, graphs of the frequency 
function in the complex plane.

Transient Response
The impulse and step responses of the models are shown by

impulse(Model)

and

step(Model)

impulse and step follow the general syntax, but can also accept iddata objects 
as arguments. For direct estimation of step and impulse responses from data, 
use the procedure described in “Estimating Impulse Responses” on page 3-15.

Zeros and Poles
The zeros and poles are graphed by

pzmap(Model)

This gives a plot with 'x' marking poles and 'o' marking zeros. Otherwise, 
pzmap follows the general syntax.
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General
If you have the Control System Toolbox,

view(Model)

opens the LTI viewer with access to a number of model displays. No 
uncertainty information can be shown, however.

Transformations to Other Model Representations
Within the structure in which the model was created, you can extract 
parametric information using the get function or by subscripting. For example, 
for a state-space model, Mod.A is the A matrix, while Mod.dA contains its 
standard deviations. For a polynomial model, Mod.a and Mod.da are the A 
polynomial and its standard deviation.

Generally speaking you can transform to another representation by just using 
the object constructor, as in

modss = idss(Model)
modp = idpoly(Model)

Analogously, if you have the Control System Toolbox, you can freely transform 
between the different idmodel objects and the LTI objects.

syss = ss(Model)
systf = tf(Model)
Model = idss(Ltisys)

In addition, regardless of the particular model structure, there are a number of 
commands that compute various model representations. These all have the 
basic syntax

[G, dG] = command(Model)

where G contains model characteristics and dG their standard deviation or 
covariance. The transformation commands are

[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(Model)

[a,b,c,d,f,da,db,dc,dd,df] = polydata(Model)

[A,B,dA,dB] =arxdata(Model)

[Num,Den,dNum,dDen] = tfdata(Model)
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[Z,P,K,CovZ,CovP,covK] = zpkdata(Model)

G = idfrd(Model)

[H,w,CovH] = freqresp(Model)

The two last commands were described previously. The three first commands 
clearly transform to the state-space, the polynomial, and the multivariable 
ARX representations. See “Defining Model Structures” on page 3-39. tfdata 
and zpkdata compute the transfer functions and zeros, poles, and transfer 
function gains. See Chapter 4, “Function Reference,” for details.

Discrete- and Continuous-Time Models

Continuous-Time Models
Continuous-time models are created and recognized by the property 'Ts' = 0. 
You can create and analyze all idmodel objects as continuous-time models by 
setting Ts equal to zero at the time of creation, as in

m = idpoly(1,[0 1 1],1,1,[1 2 3],'Ts',0)

for the model

All model characteristics are then computed and graphed for the 
continuous-time representation. Time and frequency scales are determined 
based on the dynamics of the system (the pole/zero locations).

For simulation and prediction, the continuous-time models are first converted 
to discrete time, using the sampling interval and intersample behavior of the 
data.

Estimating Continuous-Time Models
The estimation routines support the estimation of continuous-time state-space 
models in several different ways. This was described in “Estimating 
Continuous-Time Models: General Remarks” on page 3-54. 

The major reason for identifying continuous-time models is to secure a 
particular structure of the continuous-time state-space matrices. This would 
typically reflect a physical interpretation or some gray-box modeling work 
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done, as for the process models, described in “Process Models: the idproc Model” 
on page 3-41, or continuous-time idss or idgrey models, as described in 
“Black-Box State-Space Models: the idss Model” on page 3-46. 

Transformations
Transformations between continuous-time and discrete-time model 
representations are performed by c2d and d2c. Note that it is not sufficient just 
to assign a new value of Ts to the model object. The corresponding uncertainty 
measure (the estimated covariance matrix of the internal parameters) is also 
transformed in most cases. The syntax is 

modc = d2c(modd)
modd = c2d(mc,T)

The transformation c2d also offers an optional output argument that describes 
how the initial state should be transformed.

If the discrete-time model has some pure time delays ( ), the default 
command removes them before forming the continuous-time model, and 
appends them using the property InputDelay in model modc. This property is 
used to add appropriate phase lag and shift the data whenever the model is 
used. d2c also offers an option to approximate the dead time by a finite 
dimensional system. Note that the disturbance properties are translated by the 
somewhat questionable formula (Equation 3-29). The covariance matrix is 
translated by the Gauss approximation formula using numerical derivatives. 
The M-file nuderst is then invoked. You might want to edit it for applications 
where the parameters have very different orders of magnitude. See the 
comments in “State-Space Structures: Initial Values and Numerical 
Derivatives” on page 3-54.

Here is an example that compares the Bode plots of an estimated model and its 
continuous-time counterpart.

m= armax(Data,[2 3 1 2]);
mc = d2c(m); bode(m,mc)

The transformations between discrete and continuous time depend on the 
intersample behavior of the input. The formulas are different if the input is 
assumed to be piecewise constant or piecewise linear between samples ('zoh' 
or 'foh'). For estimated discrete-time models, the input properties of the 
estimation data are used for this purpose, by default. To override this, add an 
extra argument, as described in the reference pages for c2d and d2c.

nk 1>
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Model Structure Selection and Validation 
After you have been analyzing data for some time, you typically end up with a 
large collection of models with different orders and structures. You need to 
decide which one is best, and whether the best description is an adequate 
model for your purposes. These are the problems of model validation.

Model validation is the heart of the identification problem, but there is no 
absolute procedure for approaching it. It is wise to be equipped with a variety 
of different tools with which to evaluate model qualities. The command advice 
can be applied to any estimated model for some hints on the model’s quality.

advice(Model)

This section describes the techniques you can use to evaluate model qualities 
using the System Identification Toolbox.

Comparing Different Structures
It is natural to compare the results obtained from model structures with 
different orders. For state-space models, you can easily obtain this by using a 
vector argument for the order in n4sid or pem.

m = n4sid(Data,1:10)
m = pem(Data,'nx',3:15)

This invokes a plot from which a best order is chosen. If you omit the order 
argument, m = n4sid(Data) or pem(Data) makes a default choice of the best 
order.

For models of ARX type, various orders and delays can be efficiently studied 
with the command arxstruc. Collect in a matrix NN all the ARX structures you 
want to investigate, so that each row of NN is of the type

[na nb nk]

With

V = arxstruc(Date,Datv,NN)

an ARX model is fitted to the data set Date for each of the structures in NN. 
Next, for each of these models, the sum of squared prediction errors is 
computed as they are applied to the data set Datv. The resulting loss functions 
are stored in V together with the corresponding structures.
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To select the structure that has the smallest loss function for the validation set 
Datv, use

nn = selstruc(V,0)

Such a procedure is known as cross validation and is a good way to approach 
the model selection problem.

It is usually a good idea to visually inspect how the fit changes with the number 
of estimated parameters. You can get a graph of the fit versus the number of 
parameters with

selstruc(V)

This routine prompts you to choose the number of parameters to estimate, 
based upon visual inspection of the graph. Then it selects the structure with 
the best fit for that number of parameters.

The command struc helps generate typical structure matrices NN for 
single-input systems. A typical sequence of commands is

V = arxstruc(Date,Datv,struc(2,2,1:10));
nn = selstruc(V,0);
nk = nn(3);
V = arxstruc(Date,Datv,struc(1:5,1:5,nk-1:nk+1));
selstruc(V)

where you first establish a suitable value of the delay nk by testing 
second-order models with delays between 1 and 10. The best fit selects the 
delay, and then all combinations of ARX models with up to five a and b 
parameters are tested with delays around the chosen value (a total of 75 
models).

If the model is validated on the same data set from which it was estimated, that 
is, if Date = Datv, the fit always improves as the flexibility of the model 
structure increases. You need to compensate for this automatic decrease of the 
loss functions. There are several approaches for this. Probably the best known 
technique is Akaike’s Final Prediction Error (FPE) criterion and his closely 
related Information Theoretic Criterion (AIC). Both simulate the 
cross-validation situation, where the model is tested on another data set. 
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The FPE is formed as

where d is the total number of estimated parameters and N is the length of the 
data record. V is the loss function (quadratic fit) for the structure in question. 
The AIC is formed as

(See Section 16.4 in Ljung (1999).)

According to Akaike’s theory, in a collection of different models, choose the one 
with the smallest FPE (or AIC). You can display the FPE values with the model 
parameters by typing just the model name. It is also one of the fields in 
EstimationInfo, and you can access it using

FPE = fpe(m)

Similarly, the AIC value of an estimated model is obtained as

AIC = aic(m)

If you have used arxstruc to generate many ARX models, you find the 
structure that minimizes the AIC by 

nn = selstruc(V,'AIC')

where V is the output of arxstruc. A related criterion is Rissanen’s Minimum 
Description Length (MDL) approach, which selects the structure that allows 
the shortest overall description of the observed data. This is obtained with

nn = selstruc(V,'MDL')

If substantial noise is present, the ARX models might need to be of high order 
to describe simultaneously the noise characteristics and the system dynamics. 
(For ARX models the disturbance model 1/A(q) is directly coupled to the 
dynamics model B(q)/A(q).) 
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Impulse Response to Determine Delays
The command impulse applied to a data set

impulse(Data,'sd',3)

shows a nonparametric estimate of the impulse response. In the call above, a 
confidence region around zero is also shown, corresponding to three standard 
deviations (ca. 99.9%). Any part of the impulse response that is outside this 
region is thus significant. The first sample after t = 0, at which the impulse 
response estimate crosses the confidence band, is thus a good estimate of the 
delay in the channel in question.

Significant impulse response estimates for negative time lags are indications 
of feedback in the data.

Checking Pole-Zero Cancellations
A near pole-zero cancellation in the dynamics model is an indication that the 
model order might be too high. To judge whether a near cancellation is a real 
cancellation, take the uncertainties in the pole and zero locations into 
consideration

pzmap(mod,'sd',1)

where the 1 indicates how many standard deviations wide the confidence 
interval is. If the confidence regions of a zero and a pole overlap, try lower 
model orders.

This check is especially useful when the models have been generated by arx. 
As mentioned previously, the orders can be pushed up because of the 
requirement that c/A(q) describe the disturbance characteristics. Checking 
cancellations in B(q)/A(q) then gives a good indication of which orders to 
choose from model structures like armax, oe, and bj.

Residual Analysis
The residuals associated with the data and a given model, as in 
(Equation 3-38), are ideally white and independent of the input for the model 
to correctly describe the system. The function

resid(Model,Data)

computes the residuals (prediction errors) e from the model when applied to 
Data, and performs whiteness and independence analyses. The autocorrelation 
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function of e and the cross-correlation function between e and u are computed 
and displayed for up to lag 25. Also displayed are 99% confidence intervals for 
these variables, assuming that e is indeed white and independent of u.

The rule is that if the correlation functions go significantly outside these 
confidence intervals, do not accept the corresponding model as a good 
description of the system. Some qualifications of this statement are necessary:

• Model structures like the OE structure (Equation 3-17) and methods like the 
IV method (Equation 3-41) focus on the dynamics G and less about the 
disturbance properties H. If you are interested primarily in G, focus on the 
independence of e and u rather than the whiteness of e.

• Correlation between e and u for negative lags, or current  affecting 
future , is an indication of output feedback. This is not a reason to reject 
the model. Correlation at negative lags is of interest, because certain 
methods do not work well when feedback is present in the input-output data 
(see “Feedback in Data” on page 3-83), but concentrate on the positive lags 
in the cross-correlation plot for model validation purposes. 

• When you are using the ARX model (Equation 3-14), the least squares 
procedure automatically makes the correlation between  and  
zero for , , , for the data used for the estimation.

The residuals e together with the input u are returned by

E = resid(Model,Data)

as an iddata object. As part of the validation process, you can graph the 
residuals using

 plot(E)

for a simple visual inspection of irregularities and outliers. (See also “Outliers 
and Bad Data; Multiple-Experiment Data” on page 3-81.)

Model Error Models
The residual call

E = resid(Model,Data)

returns the iddata object e, which has the inputs in Data as inputs and the 
prediction errors (residuals) as outputs. Building models using e will thus 
reveal whether there is any significant influence from u to e left in the data. 

e t( )
u t( )

e t( ) u t k–( )
k nk= nk 1+ …nk nb 1–+
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Such models are called model error models, and examining them is a good 
complement to traditional residual analysis.

E= resid(Model,Data)
impulse(E,'sd',3) % An alternative to residual analysis
bode(spa(E),'sd',3) % Shows the frequency ranges 

% with significant model errors
m = arx(E,[0 10 0])
bode(m,'sd',3)

Note that the resid command has several options to display model error 
properties rather than correlation functions.

Noise-Free Simulations
To check whether a model is capable of reproducing the observed output when 
driven by the actual input, you can run a simulation.

u = Data(:,[],:) % Extracting the input from the data
yh = sim(Model,u)
y = Data(:,:,[]) % Extracting the output from the data
plot(y,yh)

The same result is obtained by

compare(Data,Model)

It is a much tougher and more revealing test to perform this simulation, as well 
as the residual tests, on a fresh data set Data that was not used for the 
estimation of the model Model. This is called cross validation. 

Assessing the Model Uncertainty
The estimated model is always uncertain, due to disturbances in the observed 
data and the lack of an absolutely correct model structure. The variability of 
the model that is due to the random disturbances in the output is estimated by 
most of the estimation procedures, and it can be displayed and illuminated in 
a number of ways. This variability answers the question of how different can 
the model be if the identification procedure is repeated, using the same model 
structure, but with a different data set that uses the same input sequence. It 
does not account for systematic errors due to an inadequate choice of model 
structure. There is no guarantee that the true system lies in the confidence 
interval. The rule is that the model should pass a residual analysis (see 
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“Residual Analysis” on page 3-73) test (correlation functions essentially inside 
the confidence lines) for the uncertainty bounds to be regarded as reliable.

The uncertainty in the different model views is displayed if the argument 'sd' 
is included in the argument list,

command(Model,'sd',sd)

as explained in “Graphs of Model Properties” on page 3-64.

The uncertainty in the time response is displayed by

simsd(Model,u)

Ten possible models are drawn from the asymptotic distribution of the model 
Model. The response of each of them to the input u is graphed on the same 
diagram.

The uncertainty of these responses concerns the external input-output 
properties of the model. It reflects the effects of inadequate excitation and the 
presence of disturbances.

You can also directly get the standard deviation of the simulated result by 

[ysim,ysimsd] = sim(Model,u)

The uncertainty in internal representations is manifested in the covariance 
matrix of the estimated parameters

Model.CovarianceMatrix

which is used to give the standard deviations of all model characteristics. The 
parametric uncertainty is directly available as

Model.da

for the standard deviations of Model.a.

Note that state-space models, estimated in a free parameterization, do not 
have well-defined standard deviations of the matrix elements. The model still 
has stored the uncertainty of the input-output behavior, so other model 
representations and graphs will show the uncertainty. For a state-space model 
in a free parameterization, it is possible to first transform it to a canonical 
parameterization and then display the matrix parameter uncertainties:

Model = pem(Data,5)
Modelc = Model
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Modelc.ss = 'canon'
Modelc.da

All routines for computing and displaying model characteristics can also 
calculate and show the uncertainties. See “Transformations to Other Model 
Representations” on page 3-67.

Large uncertainties in these representations are caused by excessively high 
model orders, inadequate excitation, or bad signal-to-noise ratios.

Comparing Different Models
It is a good idea to display the model properties in terms of quantities that have 
more physical meaning than the parameters themselves. Bode plots, pole-zero 
plots, and model simulations all give a sense of the properties of the system 
that have been picked up by the model.

If several models of different characters give very similar Bode plots in the 
frequency range of interest, you can be fairly confident that these must reflect 
features of the true, unknown system. You can then choose the simplest model 
among these.

A typical identification session includes estimation in several different 
structures, and comparisons of the model properties. Here is an example.

a1 = arx(Data,[1 2 1]);
g = spa(Data);
bode(g,a1)
bode(g('n'),a1('n'))% the output disturbance spectra
am2 = armax(Data,[2 2 2 1]);
bode(g,am2)
pzmap(a1,am2,'sd',3)

Selecting Model Structures for Multivariable 
Systems
A multivariable (MIMO) system is a system with several input and output 
channels. All model structures in the toolbox support models with one output 
and several inputs. Polynomial models, idpoly, do not handle multioutput 
models, however.
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Model Structures
Multivariable systems offer a potentially richer internal structure. The easiest 
approach, in the black-box situation, is to think just in terms of input delays 
and state-space model order. 

A recommended approach is to get an idea of input delays from the 
nonparametric impulse response estimate and determine the vector nk = 
[nk1,nk2,...,nkm] where nkj is the minimal delay from input j to any of the 
output channels. Then try state-space models with several orders and with 
these delays.

impulse(Data,'sd',3)
Model = n4sid(Data(1:500),'nx',1:10,'nk',nk)
compare(Data(501:1000),Model)

The compare plot will reveal which output channels are easy and which are 
difficult to reproduce.

An alternative to find the delays is to first estimate a parametric model with 
delays 1, and then examine the impulse responses of this model and determine 
the delays.

Model = pem(Data) % This uses 'best' model order.
impulse(Model,'sd',3)
Model = pem(Data,'nx',1:10,'nk',nk)

To test models with delay 0 in a similar way, use

Model = pem(Data,'best','nk',zeros(size(nk)))

Significant responses at delay 0 must be examined with care, because they 
might be caused by feedback.

Note that delays nk larger than 1 are incorporated in the model structure, and 
thus increase the state-space model order from the nominal one with 
sum(max(nk-1,zeros(size(nk)))). An alternative is to use the property 
'InputDelay'. This leads to a model that has the same delays as for 'nk'. 
These are not explicitly shown in the model matrices, but stored as a property 
to be used when necessary. See “nk and InputDelay” on page 3-104. See also 
the properties of idss on the reference page.

If you have detailed knowledge about which orders and delays are reasonable 
in the different input/output channels, you can use multivariable ARX models 
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in the idarx model format. This allows you to define the orders of the input and 
output lags, as well as the delays, independently for the different channels.

Black-box parameterizations of multivariable systems require many 
parameters. Therefore, it might be important to incorporate any essential 
structure knowledge based on physical insight. You typically do this with 
continuous-time, custom model parameterizations using structured idss or 
idgrey models. See “Structured State-Space Models with Free Parameters: the 
idss Model” on page 3-48 and “State-Space Models with Coupled Parameters: 
the idgrey Model” on page 3-51.

Channel Selection
A particular aspect of multivariable models is the selection of channels. Models 
for subselections of input-output channels can be quite useful and informative. 
Generally speaking the models become better when more input channels are 
used, and worse when more output channels are used. The latter observation 
is due to the fact that such models have more to explain. 

If you build models with several outputs and find, using compare, a certain 
output channel to be difficult to reproduce, then try to build a model of this 
channel alone. This will reveal if there are inherent difficulties with this 
output, or if it is just too difficult to handle it together with other outputs. 

Analogously, if you see that using, for example, step or impulse, a certain 
input channel seems to have an insignificant influence on the outputs, then 
remove that channel, and examine whether the corresponding model becomes 
any worse, for example, in the compare plots.

The toolbox’s data and model objects give full support for the bookkeeping 
required for these channel subselections. You select channels by direct 
subreferencing, and the InputName and OutputName properties form the basis 
for a correct combination of channels. The subreferencing follows:

Data(Samples,Outputs,Inputs)
Model(Outputs,Inputs)
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Typical command sequences can be

Date = Data(1:500)
Datv = Data(501:1000)
m = pem(Date)
compare(Datv,m)
m1 = pem(Date(:,3,4))
compare(Datv,m,m1)
bode(m,m1)
compare(Datv,m(:,4),m1)
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Dealing with Data
Extracting information from data is not an entirely straightforward task. In 
addition to the decisions required for model structure selection and validation, 
the data might need to be handled carefully. This section gives some advice on 
handling several common situations.

Offset Levels
When the data has been collected from a physical plant, it is typically 
measured in physical units. The levels in these raw input and output 
measurements might not match in any consistent way. This will force the 
models to waste some parameters correcting the levels.

Typically, linearized models are sought around some physical equilibrium. In 
such cases offsets are easily dealt with: subtract the mean levels from the input 
and output sequences before the estimation. It is best if the mean levels 
correspond to the physical equilibrium, but if such values are not known, use 
the sample means.

Data = detrend(Data);

Section 14.1 in Ljung (1999) discusses this in more detail. There are situations 
when it is not advisable to remove the sample means. It could be, for example, 
that the physical levels are built into the underlying model, or that 
integrations in the system must be handled with the right level of the input 
being integrated. 

With the detrend command, you can also remove piecewise linear trends. 

Outliers and Bad Data; Multiple-Experiment Data
Real data are also subject to possible bad disturbances: an unusually large 
disturbance, a temporary sensor or transmitter failure, etc. It is important that 
such outliers are not allowed to affect the models too strongly.

The robustification of the error criterion (described under LimitError in 
Algorithm Properties on page 4-22) helps here, but it is always good practice 
to examine the residuals for unusually large values, and to go back and 
critically evaluate the original data responsible for the large values. If the raw 
data is obviously in error, it can be smoothed and the estimation procedure 
repeated.
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Often the data has portions with bad behavior. This can, for example, be due to 
big disturbances or sensor failures over a period of time. It can also be that 
there are time periods where nothing happens, the input is not exciting, etc. 
Then the best alternative is to break up the data into pieces of informative 
portions. By merging the pieces into a multiple-experiment iddata object, they 
can still be used together to build models. Another situation when 
multiple-experiment data is useful is when several different experiments have 
been performed on the same plant. The estimation routines take proper action 
to handle the different pieces. All estimation, simulation, and validation 
routines in the toolbox handle multiple-experiment data in a transparent 
fashion. A typical string of commands could be

plot(Data)
Datam = merge(Data(1:340),Data(500:897), ...

Data(1001:1200),Data(1550:2000))
m =pem(getexp(Datam,[1,2,4])) % Portions 1, 2, and 4 for 
estimation
compare(getexp(Datam,3),m) % Portion 3 for validation

Missing Data
In practice it is often the case that certain measurement samples are missing. 
The reason might be sensor failures or data acquisition failures. It might be 
that the data are directly reported as missing, or that plots reveal that some 
values are obviously in error. This can apply both to inputs and outputs. In 
these cases, replace the missing data by NaNs when forming the signal matrices 
and the iddata object. The routine misdata can then be applied to reconstruct 
the missing data in a reasonable way.

dat = iddata(y,u,0.2) % y and/or u contain NaNs for missing data.
dat1 = misdata(dat);
plot(dat,dat1) % Checking how the missing data 

% has been estimated in dat1
m = pem(dat1) % Model estimated using reconstructed missing data

See Section 14.2 in Ljung (1999) for a discussion on missing data.

Filtering Data: Focus
Depending upon the application, interest in the model can be focused on 
specific frequency bands. Filtering the data before the estimation, through 
filters that enhance these bands, improves the fit in the interesting regions. 
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This is accomplished in the System Identification Toolbox by the property 
'Focus'. For example, to enhance the fit in the frequency band between 0.05 
and 1 rad/s, execute one of the following:

m = pem(Data,3,'Foc',[0.05 1])

ma = arx(Data,[2 3 1],'Foc',[0.05 1])

For time-domain data, this computes and uses a fifth-order Butterworth 
bandpass filter with passband between the indicated frequencies. For 
frequency-domain data, this selects the frequencies in the passband. The data 
is filtered through the filter before fitting the transfer function from the 
measured inputs (G in (Equation 3-58)) to the outputs. The disturbance model 
(H) is, however, estimated using the unfiltered data. Chapter 14 in Ljung 
(1999) discusses the role of filtering in more detail.

For several passbands, use a matrix with two columns as focus, where each row 
defines a passband.

For a model that does not use a disturbance description (that is, H = 1 in 
(Equation 3-58), which corresponds to K = 0 for state-space, and 
na = nc = nd = 0 for polynomial models), the Focus effect is the same as 
applying the routine to filtered data. That is,

m = pem(Data,3,'Foc',[0.05 1],'dist','none')
Df = idfilt(Data,[0.05 1]);
m = pem(Df,3,'dist','none')

give the same model.

The System Identification Toolbox contains other useful commands for related 
problems. For example, if you want to lower the sampling rate by a factor of 5, 
use

Dat5 = resample(Data,1,5);

Feedback in Data
If the system was operating in closed loop (feedback from the past outputs to 
the current input) when the data was collected, you must exercise some care.

Basically, all the prediction error methods work equally well for closed-loop 
data. Note, however, that the output-error model (Equation 3-17) and the 
Box-Jenkins model (Equation 3-18) are normally capable of giving a correct 
description of the dynamics G, even if H (which equals 1 for the output-error 
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model) does not allow a correct description of the disturbance properties. This 
is not true for closed-loop data, so you need to model the disturbance properties 
more carefully. Another thing to be cautious about is that impulse response 
effects at delay 0 very well could be traced to the feedback mechanism and not 
to the system itself.

The spectral analysis method and the instrumental variable techniques (with 
default instruments) as well as n4sid can give unreliable results when applied 
to closed-loop data. Avoid these techniques when feedback is present.

To detect whether feedback is present, use the basic method of applying 
impulse to estimate the impulse response. Significant values of the impulse 
response at negative lags are a clear indication of feedback. There is also a 
command, feedback, that can be applied to the data for direct tests. 

When a parametric model has been estimated and the resid command is 
applied, a graph of the correlation between residuals and inputs is given. 
Significant correlation at negative lags again indicates output feedback in the 
generation of the input. Testing for feedback is, therefore, a natural part of 
model validation.

The advice function applied both to data and to estimated models will also 
indicate possible feedback effects in the data. See the reference page for 
feedback.

Delays
The selection of the delay nk in the model structure is a very important step in 
obtaining good identification results. You can get an idea about the delays in 
the system by the impulse response estimate from impulse.

Incorrect delays are also visible in parametric models. Underestimated delays 
(nk too small) show up as small values of leading  estimates compared to 
their standard deviations. Overestimated delays (nk too large) are usually 
visible as a significant correlation between the residuals and the input at the 
lags corresponding to the missing  terms in the resid plot.

A good procedure is to start by using arxstruc to test all feasible delays 
together with a second-order model. Use the delay that gives the best fit for 
further modeling. When you have found an otherwise satisfactory structure, 
vary nk around the nominal value within the structure and evaluate the 
results.

bk

bk
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The command delayest directly estimates the delay, based on the arxstruc 
command.



3 Tutorial

3-86

Recursive Parameter Estimation
In many cases it might be necessary to estimate a model online at the same 
time as the input-output data is received. You might need the model to make 
some decision online, as in adaptive control, adaptive filtering, or adaptive 
prediction. It might be necessary to investigate possible time variation in the 
system’s (or signal’s) properties during the collection of data. Terms like 
recursive identification, adaptive parameter estimation, sequential estimation, 
and online algorithms are used for such algorithms. Chapter 11 in Ljung (1999) 
deals with such algorithms in some detail.

Basic Algorithm
A typical recursive identification algorithm is

(3-60)

Here  is the parameter estimate at time t, and is the observed output 
at time t. Moreover, is a prediction of the value based on observations 
up to time  and also based on the current model (and possibly also earlier 
ones) at time . The gain determines in what way the current 
prediction error affects the update of the parameter estimate. It is 
typically chosen as

(3-61)

where is (an approximation of) the gradient with respect to  of . 
The latter symbol is the prediction of according to the model described by 

. Note that model structures like AR and ARX that correspond to linear 
regressions can be written as

(3-62)

where the regression vector  contains old values of observed inputs and 
outputs, and  represents the true description of the system. Moreover, 

 is the noise source (the innovations). Compare with (Equation 3-14). The 

natural prediction is , and its gradient with respect to  
becomes exactly .

θ̂ t( ) θ̂ t 1–( ) K t( ) y t( ) ŷ t( )–( )+=

θ̂ t( ) y t( )
ŷ t( ) y t( )

t 1–
t 1– K t( )

y t( ) ŷ t( )–

K t( ) Q t( )ψ t( )=

ψ t( ) θ ŷ t θ( )
y t( )

θ

y t( ) ψT t( )θ0 t( ) e t( )+=

ψ t( )
θ0 t( )

e t( )

ŷ t( ) ψT t( )θ̂ t 1–( )= θ
ψ t( )
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For models that cannot be written as linear regressions, you cannot recursively 
compute the exact prediction and its gradient for the current estimate . 
Then you must use approximations  and  instead. Section 11.4 in 
Ljung (1999) describes suitable ways of computing such approximations for 
general model structures.

The matrix , which affects both the adaptation gain and the direction in 
which the updates are made, can be chosen in several different ways. This is 
discussed in the following.

Choosing an Adaptation Mechanism and Gain
The most logical approach to the adaptation problem is to assume a certain 
model for how the true parameters  change. A typical choice is to describe 
these parameters as a random walk.

(3-63)

Here  is assumed to be white Gaussian noise with covariance matrix

(3-64)

Suppose that the underlying description of the observations is a linear 
regression (Equation 3-62). An optimal choice of  in (Equation 3-60) and 
(Equation 3-61) can then be computed from the Kalman filter, and the 
complete algorithm becomes

(3-65)

Here  is the variance of the innovations  in (Equation 3-62): 

 (a scalar). The algorithm (Equation 3-65) is called the Kalman 

θ̂ t 1–( )
ŷ t( ) ψ t( )

Q t( )

θ0

θ0 t( ) θ0 t 1–( ) w t( )+=

w t( )

Ew t( )wT t( ) R1=

Q t( )

θ̂ t( ) θ̂ t 1–( ) K t( ) y t( ) ŷ t( )–( )+=

ŷ t( ) ψT t( )θ̂ t 1–( )=
K t( ) Q t( )ψ t( )=

Q t( ) P t 1–( )

R2 ψ t( )TP t 1–( )ψ t( )+
-------------------------------------------------------------=

P t( ) P t 1–( ) R1
P t 1–( )ψ t( )ψ t( )TP t 1–( )

R2 ψ t( )TP t 1–( )ψ t( )+
--------------------------------------------------------------------–+=

R2 e t( )
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filter (KF) approach to adaptation, with drift matrix . See Equations (11.66) 

and (11.67) in Ljung (1999). The algorithm is entirely specified 
by , , , , and the sequence of data , , , 2. Even 

though the algorithm is appropriate for a linear regression model structure, it 
can also be applied in the general case where  is computed in a different 
way from (Equation 3-65b).

Another approach is to discount old measurements exponentially, so that an 
observation that is  samples old carries a weight that is  of the weight of 
the most recent observation. This means that the following function is 
minimized rather than (Equation 3-39) at time t: 

(3-66)

Here  is a positive number (slightly) less than 1. The measurements that are 
older than  carry a weight in the expression above that is less 
than about 0.3. Think of  as the memory horizon of the approach. 
Typical values of  are in the range 0.97 to 0.995. 

The criterion (Equation 3-66) can be minimized exactly in the linear regression 
case giving the algorithm (Equation 3-65abc) with the following choice of :

(3-67)

This algorithm is called the forgetting factor (FF) approach to adaptation, with 
the forgetting factor . See Equation (11.63) in Ljung (1999). The algorithm is 
also known as recursive least squares (RLS) in the linear regression case. Note 
that  in this approach gives the same algorithm as  in 
the Kalman filter approach. 

A third approach is to allow the matrix  to be a multiple of the identity 
matrix.

(3-68)

R1
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It can also be normalized with respect to the size of .

(3-69)

See Equations (11.45) and (11.46), respectively, in Ljung (1999). These choices 

of  move the updates of  in (Equation 3-60) in the negative gradient 
direction (with respect to ) of the criterion (Equation 3-39). Therefore, 
(Equation 3-68) is called the unnormalized gradient (UG) approach and 
(Equation 3-69) the normalized gradient (NG) approach to adaptation, with 
gain . The gradient methods are also known as least mean squares (LMS) in 
the linear regression case.

Available Algorithms
The System Identification Toolbox provides the following functions that 
implement all common recursive identification algorithms for model structures 
in the family (Equation 3-43): rarmax, rarx, rbj, rpem, rplr, and roe. They all 
share the following basic syntax:

[thm,yh] = rfcn(z,nn,adm,adg)

Here z contains the output-input data as usual. nn specifies the model 
structure, exactly as for the corresponding offline algorithm. The arguments 
adm and adg select the adaptation mechanism and adaptation gain listed above.

 adm = 'ff'; adg = lam

gives the forgetting factor algorithm (Equation 3-67), with forgetting factor 
lam.

adm = 'ug'; adg = gam

gives the unnormalized gradient approach (Equation 3-68) with gain gam. 
Similarly,

adm = 'ng'; adg = gam

gives the normalized gradient approach (Equation 3-69). To obtain the Kalman 
filter approach (Equation 3-65) with drift matrix R1, enter

adm = 'kf'; adg = R1

ψ

Q t( ) γ

ψ t( ) 2
-----------------I=

Q t( ) θ̂
θ

γ
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The value of  is always 1. Note that the estimates  in (Equation 3-65) are 
not affected if all the matrices  and  are scaled by the same number. 
Therefore you can always scale the original problem so that  becomes 1.

The output argument thm is a matrix that contains the current models at the 
different samples. Row k of thm contains the model parameters, in alphabetical 
order at sample time k, corresponding to row k in the data matrix z. The 
ordering of the parameters is the same as m.par would give when applied to a 
corresponding offline model. 

The output argument yh is a column vector that contains, in row k, the 
predicted value of , based on past observations and current model. The 
vector yh thus contains the adaptive predictions of the outputs, and is useful 
also for noise canceling and other adaptive filtering applications.

The functions also have optional input arguments that allow the specification 
of , and . Optional output arguments include the last value of 
the matrix P and of the vector .

Now, rarx is a recursive variant of arx; similarly rarmax is the recursive 
counterpart of armax, and so on. Note, however, that rarx does not handle 
multioutput systems, and rpem does not handle state-space structures.

The function rplr is a variant of rpem, and uses a different approximation of 
the gradient . It is known as the recursive pseudolinear regression approach, 
and contains some well-known special cases. See Equation (11.57) in Ljung 
(1999). When applied to the output-error model (nn=[0 nb 0 0 nf nk]) it 
results in methods known as HARF ('ff'-case) and SHARF ('ng'-case). The 
common extended least squares (ELS) method is an rplr algorithm for the 
ARMAX model (nn=[na nb nc 0 0 nk]).

The following example shows a second-order output-error model, which is built 
recursively, and its time-varying parameter estimates plotted as functions of 
time.

thm = roe(z,[2 2 1],'ff',0.98);
plot(thm)

The next example shows how a second-order ARMAX model is recursively 
estimated by the ELS method, using Kalman filter adaptation. The resulting 
static gains of the estimated models are then plotted as a function of time.

[N,dum]=size(z);
thm = rplr(z,[2 2 2 0 0 1],'kf',0.01∗eye(6));

R2 θ̂
R1 R2, P 0( )

R2

y k( )

θ 0( ) P 0( ), ψ 0( )
ψ

ψ



Recursive Parameter Estimation

3-91

nums = sum(thm(:,3:4)')';
dens = ones(N,1)+sum(thm(:,1:2)')';
stg = nums./dens;
plot(stg)

So far, the examples of applications where a batch of data is examined cover 
studies of the variability of the system. The algorithms are, however, also 
appropriate for true online applications, where the computed model is used for 
some online decision. You do this by storing the update information in 

 and information about past data in  (and ) and 
using that information as initial data for the next time step. The following 
example shows the recursive least squares algorithm being used online (just to 
plot one current parameter estimate).

% Initialization, first i/o pair y,u (scalars)
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98);
axis([1 50 -2 2])
plot(1,th(1),'∗'),hold
%The online loop:
for k = 2:50
% At time k receive y,u
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98,th',P,phi);
plot(k,th(1),'∗')
end

Execute iddemo #10 to illustrate the recursive algorithms.

Segmentation of Data
Sometimes the system or signal exhibits abrupt changes during the time when 
the data is collected. It might be important in certain applications to find the 
time instants when the changes occur and to develop models for the different 
segments during which the system does not change. This is the segmentation 
problem. Fault detection in systems and detection of trend breaks in time 
series can serve as two examples of typical problems.

The System Identification Toolbox offers the function segment to deal with the 
segmentation problem. The basic syntax is

thm = segment(z,nn)

θ̂ t 1–( ) P t 1–( ), φ t 1–( ) ψ t 1–( )
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with a format like rarx or rarmax. The matrix thm contains the piecewise 
constant models in the same format as for the algorithms described earlier in 
this section. 

The algorithm that is implemented in segment is based on a model description 
like (Equation 3-63), where the change term  is zero most of the time, but 
now and then it abruptly changes the system parameters . Several 
Kalman filters that estimate these parameters are run in parallel, each of them 
corresponding to a particular assumption about when the system actually 
changed. The relative reliability of these assumed system behaviors is 
constantly judged, and unlikely hypotheses are replaced by new ones. Optional 
arguments allow the specification of the measurement noise variance  in 
(Equation 3-62), the probability of a jump, the number of parallel models in 
use, and also the guaranteed lifespan of each hypothesis. See the segment 
reference page. 

w t( )
θ0 t( )

R2
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Miscellaneous Topics
This section describes a number of miscellaneous topics. Most of the 
information here is also covered in other parts of the manual, but since 
manuals seldom are read from the beginning, you can also check whether a 
particular topic is brought up here.

• “Time-Series Modeling” on page 3-93

• “Periodic Inputs” on page 3-96

• “Connections Between the Control System Toolbox and the System 
Identification Toolbox” on page 3-96

• “Memory/Speed Tradeoffs” on page 3-98

• “Local Minima” on page 3-98

• “Initial Parameter Values” on page 3-99

• “Initial State” on page 3-100

• “Initial States for Frequency Domain Data” on page 3-101

• “Using Simulation to Validate Estimated Models” on page 3-101

• “The Estimated Parameter Covariance Matrix” on page 3-103

• “No Covariance” on page 3-104

• “nk and InputDelay” on page 3-104

• “Linear Regression Models” on page 3-106

• “Spectrum Normalization and the Sampling Interval” on page 3-107

• “Interpretation of the Loss Function” on page 3-109

• “Enumeration of Estimated Parameters” on page 3-110

• “Complex-Valued Data” on page 3-111

• “Strange Results” on page 3-111

Time-Series Modeling
When there is no input present, the general model (Equation 3-43) reduces to 
the ARMA model structure.

With  you have an AR model structure.

Similarly, a state-space model for a time series is given by

A q( )y t( ) C q( )e t( )=

C q( ) 1=
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so that the matrices B and D are empty.

Basically all commands still apply to these time-series models, but with 
natural modifications. They are listed as follows:

m= idpoly(A,[ ],C)
e = iddata([],idinput(300,'rgs'))
y = sim(m,e)

If a time series s is given as a vector or a matrix, it is put into the iddata format 
by

y = iddata(s,[],Ts);

Spectral analysis (etfe and spa) returns results in the idfrd model format, 
which now just contains SpectrumData and its variance. bode will only plot 
these signal spectra and, if required, the confidence intervals. 

g = spa(y)
p= etfe(y)
bode(g,p,'sd',3)

Note that etfe gives the periodogram estimate p of the spectrum. 

armax and arx work the same way, but need no specification of nb and nk.

th = arx(y,na)
th = armax(y,[na nc])

Note that arx also handles multivariable signals, and so do n4sid and pem.

m = n4sid(y) % default order
bode(m)
compare(y,m,10) % 10-step ahead predictions being evaluated.

You can build structured state-space models of time series simply by specifying 
B = [], D = [] in idss and idgrey. resid works the same way for time-series 
models, but does not provide any input-residual correlation plots.

resid(m,y)

In addition there are two commands that are specifically constructed for 
building scalar AR models of time series. One is

x t 1+( ) Ax t( ) Ke t( )+=
y t( ) Cx t( ) e t( )+=
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m = ar(y,na)

which has an option that allows you to choose the algorithm from a group of 
several popular techniques for computing the least squares AR model. Among 
these are Burg’s method, a geometric lattice method, the Yule-Walker 
approach, and a modified covariance method. See Chapter 4, “Function 
Reference,” for details. The other command is

m = ivar(y,na)

which uses an instrumental variables technique to compute the AR part of a 
time series.

Finally, when no input is present, the functions bj, iv, iv4, and oe are not of 
interest.

Here is an example where you can simulate a time series, compare spectral 
estimates and covariance function estimates, and also the predictions of the 
model.

ts0 = idpoly([1 -1.5 0.7],[]);
ir = sim(ts0,[1;zeros(24,1)]);
Ry0 = conv(ir,ir(25:-1:1)); % The true covariance function
e = idinput(200,'rgs');
y = sim(ts0,e); % y is a vector here
y = iddata(y) % iddata object with sampling time 1.
plot(y)
per = etfe(y);
speh = spa(y);
ffplot(per,speh,ts0)
ts2 = ar(y,2); % A second-order AR model:
ffplot(speh,ts2,ts0,'sd',3)
% The covariance function estimates:
Ryh = covf(y,25);
Ryh = [Ryh(end:-1:2),Ryh]';
ir2 = sim(ts2,[1;zeros(24,1)]);
Ry2 = conv(ir2,ir2(25:-1:1));
plot([-24:24]'∗ones(1,3),[Ryh,Ry2,Ry0])
% The prediction ability of the model:
compare(y,ts2,5)
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Periodic Inputs
It is often an advantage to use a periodic input for identification whenever 
possible. See Section 13.3 in Ljung (1999). If you import or create a periodic 
input, as in

u = idinput([300 2 5]) % Period 300, 2 inputs, 5 periods

you should set the corresponding period in the iddata object.

u = iddata([],u,'Period',[300; 300]);

Normally, an even number of periods should be represented in the data. That 
allows the estimation routines to do the right things. For example, when called 
with data with periodic inputs, etfe honors the period and computes the 
frequency response on a suitably chosen frequency grid. Try this:

m0 =idpoly([1 -1.5 0.7],[0 1 0.5]);
u = idinput([10 1 150],'rbs');
u = iddata([],u,'Period',10);
e = iddata([],randn(1500,1));
y = sim(m0, [u e])
g = etfe([y u])
bode(g,'x',m0) % Good fit at the 5 excited frequencies

Connections Between the Control System Toolbox 
and the System Identification Toolbox
The objects and functions of the Control System Toolbox are quite similar to 
those of the System Identification Toolbox. This means that the two toolboxes 
can be run together efficiently.

Function Calls
The function calls are the same for many essential functions. bode, freqresp, 
impulse, minreal, nyquist, ssdata, step, tfdata, zpkdata, etc., all do the 
same things with essentially the same syntax. The System Identification 
Toolbox commands, however, also handle model uncertainty. The System 
Identification Toolbox commands are used whenever at least one of the objects 
in the argument list is an idmodel or idfrd object.

Subreferencing of channels and concatenations also follow the same syntax.
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Moreover, most of the LTI commands for model manipulation, like append, 
augstate, balreal, canon, feedback, G1+G2, G1*G2, etc., will work (using the 
Control System Toolbox) in the expected way, returning idmodel objects. 
However, in most cases covariance information is lost.

Object Relations
Because the System Identification Toolbox can be run without the Control 
System Toolbox, there are no formal parent/child relations between the objects 
in the two toolboxes. There are, however, easy transformations between them. 
The command that creates idmodel, idss, and idpoly will accept any LTI 
object, zpk, tf, or ss. idfrd can similarly be created from frd objects. If the LTI 
object has an InputGroup named 'noise' these inputs will be treated as 
normalized white noise when you are creating the idmodel object with correct 
disturbance model information.

Analogously, ss, zpk, tf, and frd accept any idmodel or idfrd (in the case of 
frd) object. The covariance information is then not stored in the LTI objects, 
but all disturbance information is translated to a group of extra input channels 
with the group name 'noise'. If these are interpreted as normalized white 
noise, the LTI objects have the same disturbance properties as the original 
imdmodel object.

These simple relations also mean that it is easy to use any LTI command in the 
Control System Toolbox and return to System Identification Toolbox objects.

Mb = idss(balreal(ss(M)))

Plot Relations
Although the calls bode, step, etc., have essentially the same syntax, the plots 
look different. The System Identification Toolbox commands show confidence 
regions when required, and typically show the different input/output channels 
as separate plots. The sorting of the channels is based on the InputName and 
OutputName properties. Therefore the System Identification Toolbox 
commands allow any mix of models, not necessarily of the same sizes.

The System Identification Toolbox plot commands do not offer the same options 
and plot interaction facilities as ltiview. However, applying view to one or 
several idmodel objects invokes the LTI Viewer.
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Here is an example of the interplay between the functions in the two toolboxes.

m0 = drss(4,3,2)
m0 = idss(m0,'NoiseVar',0.1*eye(3))
u = iddata([], idinput([800 2],'rbs'));
e = iddata([], randn(800, 3));
y = sim(m0, [u e])
Data = [y u];
m = pem(Data(1:400))
tf(m)
compare(Data(401:800),m)
view(m)

Memory/Speed Tradeoffs
On machines with no formal memory limitations, it is still of interest to 
monitor the sizes of the matrices that are formed. The typical situation is when 
an overdetermined set of linear equations is solved for the least squares 
solution. The solution time depends, of course, on the dimensions of the 
corresponding matrix. The number of rows corresponds to the number of 
observed data, while the number of columns corresponds to the number of 
estimated parameters. The property MaxSize used with all the relevant 
M-files, prevents, whenever possible, the formation of matrices with more than 
MaxSize elements. Larger data sets and/or higher-order models are handled by 
for loops. for loops give a linear increase in time when the data record is 
increased, plus some overhead.

If you regularly work with large data sets and/or high-order models, it is 
advisable to tailor the memory and speed tradeoff to your machine by choosing 
MaxSize carefully. You could also change the default value of MaxSize in the 
M-file idmsize. Then the default value of MaxSize (that is, 'Auto') will be 
tailored to your needs. Note that this value is allowed to depend on the number 
of rows and columns of the matrices formed.

Local Minima
The iterative search procedures in pem, armax, oe, and bj lead to models 
corresponding to a local minimum of the criterion function (Equation 3-39). 
Nothing guarantees that this local minimum is also a global minimum. The 
startup procedure for black-box models in these routines is, however, 
reasonably efficient in giving initial estimates that lead to the global minimum.
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If there is an indication that a minimum is not as good as you expected, try 
starting the minimization at several different initial conditions, to see if a 
smaller value of the loss function can be found. You can use the function init 
for that.

Initial Parameter Values
When only orders and delays are specified, the functions armax, bj, oe, and pem 
use a startup procedure to produce initial values. The startup procedure goes 
through two to four least squares and instrumental variable steps. It is 
reasonably efficient in that it usually saves several iterations in the 
minimization phase. Sometimes, however, it might pay to use other initial 
conditions. For example, you can use an iv4 estimate computed earlier as an 
initial condition for estimating an output-error model of the same structure.

m1 = iv4(Data,[na nb nk]);
set(m1,'a',1,'f',m1.a)
m2= oe(Data,m1);

Another example is when you want to try a model with one more delay (for 
example, three instead of two) because the leading b-coefficient is quite small.

m1 = armax(Data,[3 3 2 2]);
m1.b(3) = 0
m2 = armax(Data,m1); 

If you decrease the number of delays, remember that leading zeros in the 
B-polynomial are treated as delays. Suppose you go from three to two delays in 
the above example:

m1 = armax(z,[3 3 2 3]);
m1.b(3) = 0.00001;
m2 = armax(Data,m1);

Note that when you construct homemade initial conditions, the conditions 
must correspond to a stable predictor (C and F being Hurwitz polynomials), 
and they should not contain any exact pole-zero cancellations.

For user-defined structured state-space and multioutput models, you must 
provide the initial parameter values (initial model) when defining the 
structure in idss or idgrey. The basic approach is to use physical insight to 
choose initial values of the parameters with physical significance, and try some 
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different (randomized) initial values for the others. You can use the routine 
init for that.

For free state-space parameterizations, it can sometimes be difficult to reach 
the global minimum. If you see that the minimization routine seems to get 
stuck (turn trace on and check the improvements per iteration), it might be a 
good idea to transform state-space matrices to other realizations, as in

m = pem(Data,5,'trace','on')
m.ss = 'can';
m = pem(Data,m);
m = balreal(m); % If you have the Control System Toolbox
m = pem(Data,m);

Initial State
The filter that computes the prediction errors in (Equation 3-36) needs to be 
properly initialized. For input-output (polynomial) models, values of inputs, 
outputs, and predictions prior to time t = 0 are required, and state-space 
models need the initial state x(0). There are several ways to handle these 
unknown states. A simple one is to take all unknown values as zero. If the 
model predictor has slow dynamics (that is, the poles of CF or the eigenvalues 
of A-KC are close to the unit circle), this could have a very bad effect on the 
parameter estimates. It is particularly pronounced for output-error models, 
where the noise model cannot be adjusted to handle slow transients from initial 
conditions.

The toolbox offers a number of options to deal with the initial state of the 
predictor. They are handled by the model property InitialState. The 
unknown state can be treated as a vector of unknown parameters 
(InitialState = 'Estimate'). They can be set to zero (InitialState = 
'Zero') or estimated by a backward prediction method (InitialState = 
'Backcast'). They can also be fixed to any user-defined value. The default 
value is InitialState = 'Auto', which makes an automatic choice among the 
options, guided by the estimation data. For details, see the idss and idpoly 
reference pages. Basically, the effect of the initial conditions on the prediction 
errors is tested, and if it seems negligible, 'zero' is chosen, which gives a fast 
and efficient algorithm. Otherwise the initial state is estimated or backcast. 
EstimationInfo will contain information about which method was chosen in 
this case.



Miscellaneous Topics

3-101

Proper handling of the initial state is necessary both when models are 
estimated and when predictions and simulations are compared. The commands 
predict, pe, sim, and compare all offer options for how to deal with this.

Note that the estimated initial condition x(0) depends on both the model and 
the estimation data. It is thus a characteristic that does not necessarily have 
relevance when the model is applied to another data set.

Initial States for Frequency Domain Data 
The calculations using frequency-domain data essentially assume that the 
underlying time-domain data is periodic. Otherwise treating convolutions as 
multiplications in the frequency domain creates end-effect errors. Therefore 
initial conditions are as important for frequency-domain data as for 
time-domain data. The proper initial conditions in the frequency domain are 
those that make up for deviations in periodicity of the original data.

From a formal point of view, these initial conditions can be handled quite 
analogously to the time-domain case. They can be taken as zero, which is the 
correct choice if indeed the original data was periodic. They can also be 
estimated and backcast. Therefore the values of the property InitialState 
can assume the same values, 'zero', 'estimate', 'backcast', and 'auto', as 
in the time-domain case. This also applies to the arx command, for which 
InitialState has no effect for time-domain data.

Note, again, that the estimated value, x0, is tied to the data set for which it was 
estimated. In particular, you should not make any time-domain interpretation 
of it in case it was estimated using frequency-domain data.

Using Simulation to Validate Estimated Models
This section describes how to simulate a model in a simulation environment, 
such as Simulink, to verify that the simulation results match the experimental 
output data from a validation data set.

To simulate an estimated state-space model, you must specify the initial-state 
values for the validation data in the simulation. The initial states you specify 
for the simulation must correspond to the data set you use in the simulation.



3 Tutorial

3-102

Note  The validation data need not differ from the estimation data. If you 
choose to use different data for validation in Simulink, you must simulate 
with initial states that correspond to this data set.

The X0 model property stores the estimated initial states of the model. This 
value corresponds to the data that was used for estimation. If you use a 
different data set for validation in Simulink, you cannot use X0 to represent the 
model’s initial states during validation.

Tip  Alternatively, you can use compare to perform model validation. This 
function automatically computes the required initial conditions by default.

When you estimate a model using a data set that consists of multiple 
experiments, the initial-states property X0 stores only the estimated states 
corresponding to the last experiment. To validate a model using initial states 
from an experiment other than the last, use the pe function to estimate X0 
again for that specific experiment (see the following example).

Example — Validating an Estimated Model in Simulink
Suppose you estimate the three-state model M using a merged data set Z, which 
contains data from 5 experiments — z1, z2, z3, z4, and z5:

Z = merge(z1,z2,z3,z4,z5);
M = n4sid(Z,3);

When a model uses several data sets, the initial-states property stores only the 
estimated states corresponding to the last data set. In this example, M.X0 is a 
vector of length 3 (corresponding to the three states of the model). The values 
of M.X0 are the estimated state values corresponding to z5.

The following procedure describes how to access the initial states of z2 for the 
simulation, where z2 is a portion of the estimation data Z.
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To specify the settings of the idmodel block in Simulink for comparing the 
measured output from experiment z2 with the simulated output:

1 Estimate the initial states using the second experiment as input, that is 
Z(z2.u), as follows:

[E,X0est] = pe(M,getexp(Z,2)

Here, the function getexp(Z,2) gets the data in z2.

2 In Simulink, open the Function Block Parameters dialog box for the idmodel 
block.

3 In the idmodel variable field, type M to specify the estimated model.

4 In the Initial states... field, type X0est to specify the estimated initial 
states.

5 Click OK.

Run the simulation with these settings to compare the measured output z2.y 
to the simulated output.

The Estimated Parameter Covariance Matrix
The estimated parameters are uncertain. The amount of uncertainty is 
measured and described by the covariance matrix of the estimated parameter 
vector (this vector is a random variable, because it depends on the random 
noise that has affected the output). This covariance (uncertainty) can also be 
estimated from data, as described, for example, in Chapter 9 of Ljung (1999). 
The estimated covariance matrix is contained in the estimated model as the 
property Model.CovarianceMatrix. It is used to compute all relevant 
uncertainty measures of various model input-output properties (Bode plots, 
uncertain model output, zeros and poles, etc.).

The estimate of the covariance matrix is based on the assumption that the 
model structure is capable of giving a correct description of the system. For 
models that contain a disturbance model (H is estimated), it is assumed that 
the model will produce white residuals, for the uncertainty estimate to be 
correct.

However, for output-error models (H fixed to 1, corresponding to K = 0 for 
state-space models and C = D = A = 1 for polynomial models), it is not assumed 



3 Tutorial

3-104

that the residuals are white. Instead, their color is estimated, and a correct 
estimate of the covariance estimate is used. This corresponds to Equation 
(9.42) in Ljung (1999).

No Covariance
Evaluating and visualizing the uncertainty of the estimated models is a very 
important aspect of system identification. Handling and translating covariance 
information takes a major part of the time in many of the routines of the 
System Identification Toolbox. For example, in n4sid, calculating the 
Cramer-Rao bound (which in this case is used as an indication of the covariance 
properties) takes much longer than estimating the actual model. In d2c and 
c2d, most of the time is spent on covariance handling. If you build models that 
are of a preliminary nature, and you would like to speed up the calculations, 
you can add the property name/property value pair 'Covariance'/'None' to 
the list of arguments in most relevant routines. This will prevent covariance 
calculations and set a flag not to spend time on this in future use of the model. 
You can also set this flag in the model at any time by

Model.cov = 'no'

nk and InputDelay
What’s the difference between the properties nk and InputDelay? InputDelay 
is defined for all idmodel and idfrd objects, while nk is defined for idarx and 
idpoly as well as for 'Free' and 'Canonical' idss models. Both properties 
indicate a delay from the input channels to the outputs. For idarx, nk is a 
matrix describing the delays in the different input/output channels, but 
otherwise both nk and InputDelay describe the delay from a certain input 
channel to all the output channels.

InputDelay is really a flag that tells the model to append the input delays as 
time lags when the model is simulated, or as phase lags when the frequency 
functions are computed. The InputDelay does not show up when the model is 
represented in state-space form, nor as transfer functions, nor in the 
input-output polynomials. InputDelay can be used both for continuous- and 
discrete-time models. In the latter case, the InputDelay is measured in number 
of samples. Moreover, InputDelay can assume negative values in order to 
handle noncausal models. 

The property nk, on the other hand, is a model structure property, requiring the 
model to contain the indicated number of delays whatever the parameter 
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values. This means that the state-space matrices, the transfer functions, etc., 
will show these delays in an explicit manner. Consequently, nk is not defined 
for continuous-time models (other than as a flag for free and canonical 
state-space models whether a D matrix is included (nk = 0) or set to zero 
(nk = 1)).

Otherwise the two properties can be used in the same way. Note that the actual 
delay is the sum of nk and InputDelay. Therefore

m1 = oe(Data,[3 3 0],'InputDelay',3)
m2 = oe(Data,[3 3 1],'InputDelay',2)
m3 = oe(Data,[3 3 3]);
bode(m1,m2,m3)

gives identical bode plots (up to minor variations due to end effects in the data 
records). For state-space models, nk is 1 by default. Therefore

m1 = pem(Data,4,'InputDelay',[3 2 4])
m2 = pem(Data,4,'nk',[4 3 5])
bode(m1,m2)
A1 = m1.A
A2 = m2.A

give the same bode plots, while A1 and A2 are different. In fact while A1 is of 
size 4-by-4, the matrix A2 is of size 13-by-13, because nine extra states are 
required to accommodate the extra 3+2+4 input delays.

For continuous-time data, nk can only be used to flag whether a D matrix 
should be included in a state-space model. Any real delays must be handled by 
InputDelay. (Note that u is short for input, so you can write udel for 
InputDelay.)

Df= fft(Dt)
Df.Ts = 0: % Bandlimited data
m = oe(Df.[1 3],'udel',5); % 5 seconds delay in estimated model

If you build a continuous-time model from discrete-time data, you could use

m = pem(Dt,3,'nk',5,'sspar','can','ts',0)

This will build a preliminary model with a delay of five samples (using n4sid), 
which is then converted to continuous time, where the time delays are taken 
care of by InputDelay. The pem iterations are then carried out for this 
continuous-time model.
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Although nk and InputDelay have the same significance for a model, there are 
differences in the computational aspects of the estimation process. Generally 
speaking, it is faster to estimate a model with a long delay using InputDelay, 
rather than nk, because this gives fewer states.

There is a command inpd2nk that translates a model with a nonzero 
InputDelay to one where the delay is handled via nk. The commands pe and 
predict also offer the possibility to do this transformation when estimating 
initial states.

Note that setting nk to a certain value for a given model gives a model structure 
that has the indicated delay for any parameter values. The impulse response 
of the model might however change (not just be shifted) by this assignment.

Linear Regression Models
A linear regression model is of the type

(3-70)

where  and  are measured variables and  represents noise. Such 
models are very useful in most applications. They allow, for example, the 
inclusion of nonlinear effects in a simple way. The System Identification 
Toolbox function arx allows an arbitrary number of inputs. You can therefore 
handle arbitrary linear regression models with arx. For example, if you want 
to build a model of the type

(3-71)

let

Data = iddata(y,[ones(size(u)), u, u.^2, u.^3]);
m= arx(Data,'na',0,'nb',[1 1 1 1],'nk',[ 0 0 0 0])

This is formally a model with one output and four inputs, but all the model 
testing in terms of compare, sim, and resid operates in the natural way for the 
model (Equation 3-70), once the data set Data is defined as above.

Note that when pem is applied to linear regression structures, by default a 
robustified quadratic criterion is used. The search for a minimum of the 
criterion function is carried out by iterative search. Normally, you should use 
this robustified criterion. If you insist on a quadratic criterion, then set the 
argument LimitError in pem to 0. Then pem also converges in one step.

y t( ) θTϕ t( ) e t( )+=

y t( ) ϕ t( ) e t( )

y t( ) b0 b1u t( ) b2u2 t( ) b3u3 t( )+ + +=
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Spectrum Normalization and the Sampling Interval
In the function spa, the spectrum estimate is normalized with the sampling 
interval T as

 (3-72)

where

(See also (Equation 3-3).) The normalization in etfe is consistent with 
(Equation 3-72). This normalization means that the unit of  is “power 
per radians/time unit” and that the frequency scale is “radians/time unit.” You 
then have

(3-73)

In MATLAB, therefore, you have , where

y.ts = T
sp = spa(y); 
phiy = squeeze(sp.spec) % squeeze takes out the spurious 
dimensions
S1 = sum(phiy)/length(phiy)/T;
S2 = sum(y.^2)/size(y,1);

Note that phiy contains  between  and  with a 
frequency step of ¼ / (T length(phiy)). The sum S1 is, therefore, the 
rectangular approximation of the integral in (Equation 3-73). The spectrum 
normalization differs from the one used by spectrum in the Signal Processing 
Toolbox, and the above example shows the nature of the difference.

The normalization with T (in Equation 3-72) also gives consistent results when 
time series are decimated. If the energy above the Nyquist frequency is 

Φy ω( ) T Ry kT( )e iωT– WM k( )

k M–=

M
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R̂y kT( ) 1
N
---- y lT kT–( )y lT( )

l 1=

N

∑=

Φy ω( )

Ey2 t( ) 1
2π
------ Φy ω( ) ωd

π T⁄–

π T⁄

∫=

S1 S2≈

Φy ω( ) ω 0= ω π T⁄=
π
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removed before decimation (as is done in resample), the spectral estimates 
coincide; otherwise you see folding effects. 

Try the following sequence of commands.

m0 = idpoly(1,[ ],[1 1 1 1]);
       % 4th-order MA-process
e = idinput(2000,'rgs')
e = iddata([], e, 'Ts', 1);
y = sim(m0, e);
g1 = spa(y);
g2 = spa(y(1:4:2000)); % This code automatically sets Ts to 4.
ffplot(g1,g2) % Folding effects
g3 = spa(resample(y,1,4)); % Prefilter applied
ffplot(g1,g3) % No folding

For a parametric noise (time-series) model

 

the spectrum is computed as

(3-74)

which is consistent with (Equation 3-72) and (Equation 3-73). Think of  as 
the spectral density of the white noise source .

When a parametric disturbance model is transformed between continuous time 
and discrete time and/or resampled at another sampling rate, the functions c2d 
and d2c in the System Identification Toolbox use formulas that are formally 
correct only for piecewise constant inputs. (See (Equation 3-29).) This 
approximation is good when T is small compared to the bandwidth of the noise. 
During these transformations the variance  of the innovations  is 
changed so that the spectral density T .  remains constant. This has two 
effects: 

• The spectrum scalings are consistent, so that the noise spectrum is 
essentially invariant (up to the Nyquist frequency) with respect to 
resampling. 

• Simulation with noise using sim has a higher noise level when performed at 
faster sampling. 

y t( ) H q( )e t( );= Ee2 t( ) λ=

Φy ω( ) λT H eiωT( )
2

=

λT
e t( )

λ e t( )
λ
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This latter effect is well in line with the standard description that the 
underlying continuous-time model is subject to continuous-time white noise 
disturbances (which have infinite, instantaneous variance), and appropriate 
lowpass filtering is applied before the measurements are sampled. If this effect 
is unwanted in a particular application, scale the noise source appropriately 
before applying sim.

Note the following cautions relating to these transformations of disturbance 
models. Continuous-time disturbance models must have a white noise 
component. Otherwise the underlying state-space model, which is formed and 
used in c2d and d2c, is ill-defined. Warnings about this are issued by idpoly 
and these functions. Modify the C-polynomial accordingly. Make the degree of 
the monic C-polynomial in continuous time equal to the sum of the degrees of 
the monic A- and D-polynomials, that is, in continuous time.

length(C)-1 = (length(A)-1)+(length(D)-1)

Interpretation of the Loss Function
The value of the quadratic loss function is given as the field LossFcn in the 
EstimationInfo of the model.

m.es.LossFcn

For multioutput systems, this is equal to the determinant of the estimated 
covariance matrix of the noise source e.

For most models, you obtain the estimated covariance matrix of the 
innovations by forming the corresponding sample mean of the prediction errors 
(squared), computed (using pe) from the model with the data for which the 
model was estimated. 

Note the discrepancy between this value and the values shown during the 
minimization procedure (in pem, armax, bj, or oe), because these are the values 
of the robustified loss function (see LimitError). Note also that it is the 
nonrobustified residuals that are used to estimate the variance of e as stored in 
Model.NoiseCovariance. It is also this value that is used to estimate the 
covariance matrix of the estimated parameters. Outliers can thus influence the 
estimate of NoiseVariance and the covariance matrix, while the parameter 
estimates are made robust against them.

Be careful when comparing loss function values between different structures 
that use very different disturbance models. An output-error model might have 
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a better input-output fit even though it displays a higher value of the loss 
function than, say, an ARX model.

For ARX models computed using iv4, the covariance matrix of the innovations 
is estimated using the provisional disturbance model that is used to form the 
optimal instruments. The loss function therefore differs from what would be 
obtained if you computed the prediction errors using the model directly from 
the data. It is still the best available estimate of the innovations covariance. In 
particular, it is difficult to compare the loss function in an ARX model 
estimated using arx and one estimated using iv4. 

Enumeration of Estimated Parameters
In some cases the parameters of a model are given just as an ordered list. This 
is the case for m.ParameterVector and also when online information from the 
minimization is displayed with `trace'='full'.

Here the superscript refers to the input number:

• For a state-space structure defined by idss, the parameters in 
m.ParameterValues are obtained in the following order. The A matrix is first 
scanned row by row for free parameters. Then the B matrix is scanned row 
by row, and so on for the C, D, K, and X0 matrices. 

• For a state-space matrix that is defined by idgrey, the ordering of the 
parameters is the same as in the user-written M-file.

Multivariable ARX models are internally represented in state-space form. The 
parameter ordering follows the one described above. The ordering of the 
parameters might not be transparent, however, so it is better to use idarx and 
arxdata. 

Note that the property PName (for parameter name) might be useful to help with 
the bookkeeping in these cases, and when you are fixing certain parameters 
using FixedParameter. The routine setpname might be helpful in setting 
mnemonic parameter names automatically for black-box models.

b1
nu … bnbnu

nu c1 … cnc d1 … dnc, , , , , , , , ,

pars a1 … ana b1
1 … b, nb1

1 b1
2 …bnb2

2 …, , , , , , ,[=

f1
1 …fnf1

1 … f, 1
nu … fnfnu

nu ], , , ,
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Complex-Valued Data
Some applications of system identification work with complex-valued data, and 
thus create complex-valued models. Most of the routines in the System 
Identification Toolbox support complex data and models. This is true for the 
estimation routines ar, armax, arx, bj, covf, ivar, iv4, oe, pem, spa, and n4sid. 
The transformation routines, like freqresp, zpkdata, etc., also work for 
complex-valued models, but no pole-zero confidence regions are given. Note 
also that the parameter variance-covariance information then refers to the 
complex-valued parameters, so no separate information about the accuracy of 
the real and imaginary parts will be given. Some display functions like compare 
and plot do not work for the complex case. Use sim and plot real and imaginary 
parts separately.

Strange Results
Strange results can of course be obtained in any number of ways. We only point 
out two cautions: It is tempting in identification applications to call the 
residuals eps. Don’t do that. This changes the machine , which certainly will 
give you strange results.

It is also natural to use names like step, phase, etc., for certain variables. Note, 
however, that these variables take precedence over M-files with the same 
names, so be sure you don’t use variable names that are also names of M-files.

ε
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This chapter contains detailed descriptions of all of the functions in the System 
Identification Toolbox. It begins with a list of functions grouped by subject area 
and continues with the entries in alphabetical order. 

Information is also available through the online Help facility. By typing a 
function name without arguments, you also get immediate syntax help about 
its arguments for most functions.

The following are the function categories:

• “Help Functions”

• “Graphical User Interface”

• “Simulation and Prediction”

• “Data Manipulation”

• “Nonparametric Estimation”

• “Parameter Estimation”

• “Model Structure Creation”

• “Manipulating Model Structures”

• “Model Conversion”

• “Model Analysis”

• “Model Validation”

• “Assessing Model Uncertainty”

• “Model Structure Selection”

• “Recursive Parameter Estimation”

• “General”
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Functions — By Category

Help Functions

Graphical User Interface

Simulation and Prediction

Data Manipulation

advice Advice about data set or estimated model

help ident List System Identification Toolbox commands

idhelp Brief help for System Identification Toolbox 
commands

idprops, 
help idprops

List and explain the object properties

ident Open System Identification Toolbox GUI

midprefs Set directory for storing idprefs.mat containing GUI 
startup information

idinput Generate identification input signals 

idmdlsim Simulate idmodel objects in Simulink

pe Compute prediction errors associated with model and 
data set

predict Predict output k steps ahead

sim Simulate linear models with confidence regions

advice Advice about data set or estimated model

delayest Estimate time delay (dead time) from data

detrend Remove trends from output-input data

diff Difference signals in iddata objects
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Nonparametric Estimation 

fcat Concatenate frequency-domain signals in idfrd and 
iddata objects

feedback Investigate feedback presence in iddata sets

fft/ifft Transform iddata objects between the time and the 
frequency domains

fselect Select frequencies from idfrd object

get Query idmodel, idfrd, and iddata properties

getexp Retrieve experiment(s) from multiple-experiment 
iddata objects

iddata Package input-output into iddata object

idfilt Filter data using user-defined passbands, general 
filters, or Butterworth filters

isreal Determine whether model or data set contains real 
parameters or data

merge (iddata) Merge data sets into one iddata object

misdata Reconstruct missing input and output data

nkshift Shift data sequences

nuderst Set step size for numerical differentiation

pexcit Determine level of excitation of input signals

plot (iddata) Plot input-output iddata

realdata Determine whether iddata is based on real-valued 
signals

resample Resample data by interpolation and decimation

set Set properties of models and iddata sets

covf Estimate time-series covariance functions

cra Prewhitened-based correlation analysis and impulse 
response
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delayest Estimate time delay (dead time) from data

etfe Estimate empirical transfer functions and 
periodograms

feedback Investigate feedback presence in iddata sets

impulse Plot impulse response with confidence regions

pexcit Determine level of excitation of input signals

spa Estimate frequency response and spectrum using 
spectral analysis

spafdr Estimate frequency response and spectrum using 
spectral analysis with frequency-dependent resolution

step Plot step response with confidence regions
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Parameter Estimation

Model Structure Creation

ar Estimate parameters of AR model for scalar time 
series

armax Estimate parameters of ARMAX or ARMA model

arx Estimate parameters of ARX or AR model using least 
squares

bj Estimate parameters of Box-Jenkins model

ivar Estimate AR model using instrumental variable 
methods

iv4 Estimate ARX model using four-stage instrumental 
variable method

oe Estimate parameters of output-error model

n4sid Estimate state-space model using subspace method

pem Estimate parameters of general linear models

idarx Construct idarx model from ARX polynomials

idfrd Construct idfrd object from idmodel object or 
functions

idgrey Construct grey-box linear model using user-defined 
M-file

idpoly Create structure for input-output models using 
numerator and denominator polynomials

idproc Create simple, continuous-time process models

idss Create structure for linear state-space models with 
known and unknown parameters
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Manipulating Model Structures

Model Conversion

get Query idmodel, idfrd, and iddata properties

init Set or randomize initial parameter values

merge (idmodel) Merge estimated models

selstruc Select model order (structure)

set Set properties of models and iddata sets

setstruc Set matrix structure for idss objects

arxdata ARX parameters with variance information from 
idmodel models

balred Reduce model order (requires Control System Toolbox)

c2d Convert model from continuous to discrete time

d2c Convert model from discrete to continuous time

frd Convert idfrd objects to freqency-response-data LTI 
models of Control System Toolbox

freqresp Compute frequency function for model

fselect Select frequencies from idfrd object

idfrd Convert idmodel to idfrd object containing frequency 
functions and spectra

noisecnv Convert idmodel with noise channels to model with 
only measured channels

polydata Convert model to input-output polynomials

ss Convert idmodel objects to state-space LTI models of 
Control System Toolbox

ssdata Convert model to state-space form

tf Convert idmodel objects to transfer-function LTI 
models of Control System Toolbox
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Model Analysis

Model Validation

tfdata Convert model to transfer-function form

zpk Convert idmodel objects to zero-pole-gain LTI models 
of Control System Toolbox

zpkdata Compute zeros, poles, and transfer-function gains of 
models

advice Advice about the data set or estimated model

bode Plot frequency functions in Bode diagram form with 
confidence regions

compare Compare measured outputs with model outputs

ffplot Plot frequency functions and spectra

impulse Plot impulse response with confidence regions

isreal Determine whether model or data set contains real 
parameters or data

nyquist Plot Nyquist curve of frequency function with 
confidence regions

present Display information in idmodel model, including 
uncertainty

pzmap Plot zeros and poles with confidence regions

step Plot step response with confidence regions

view Plot model characteristics using LTI viewer in Control 
System Toolbox

aic Akaike Information Criterion for estimated model

arxstruc Compute loss function for set of different model 
structures of single-output ARX type

compare Compare measured outputs with model outputs
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fpe Akaike Final Prediction Error for estimated model

pe Compute prediction errors associated with model and 
data set

predict Predict output k steps ahead

resid Compute and test model residuals (prediction errors)

selstruc Select model order (structure)

sim Simulate linear models with confidence regions
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Assessing Model Uncertainty

Model Structure Selection

arxdata ARX parameters with variance information from 
idmodel models

bode Plot frequency functions in Bode diagram form with 
confidence regions

impulse Plot impulse response with confidence regions

nyquist Plot Nyquist curve of frequency function with 
confidence regions

polydata Convert model to input-output polynomials

pzmap Plot zeros and poles with confidence regions

sim Simulate linear models with confidence regions

simsd Simulate models with uncertainty using Monte Carlo 
method

ssdata Convert model to state-space form

step Plot step response with confidence regions

tfdata Convert model to transfer-function form

zpkdata Compute zero, poles, and transfer-function gains of 
models

arxstruc Compute loss function for set of different model 
structures of single-output ARX type

ivstruc Compute loss functions for sets of output-error model 
structures

n4sid Estimate state-space model using subspace method

pem Estimate parameters of general linear models

selstruc Select model order (structure)

struc Generate model structure matrices
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Recursive Parameter Estimation

General

rarmax Estimate recursively parameters of ARMAX or ARMA 
model

rarx Estimate recursively parameters of ARX or AR models

rbj Estimate recursively parameters of Box-Jenkins 
model

roe Estimate output-error models (IIR-filters) recursively

rpem Estimate general input-output models using recursive 
prediction error method

rplr Estimate general input-output models using recursive 
pseudolinear regression method

segment Segment data and estimate models for each segment

advice Advice about data set or estimated model

get Query idmodel, idfrd, and iddata properties

set Set properties of models and iddata sets

setpname Set mnemonic parameter names for black-box model 
structures

size Dimensions of iddata, idmodel, and idfrd objects

timestamp Return date and time when object was created or last 
modified
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Functions — Alphabetical List 4

For ease of use, most functions have several default arguments. The Syntax 
first lists the function with the necessary input arguments and then with all 
the possible input arguments. The functions can be used with any number of 
arguments between these extremes. The rule is that missing, trailing 
arguments are given default values, as defined in the manual. Default values 
are also obtained by entering the arguments as the empty matrix [ ].

MATLAB does not require that you specify all of the output arguments; those 
not specified are not returned. For functions with several output arguments in 
the System Identification Toolbox, missing arguments are, as a rule, not 
computed, in order to save time.

The following reference pages are listed in alphabetical order.
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4advicePurpose Advice about data set or estimated model

Syntax advice(Model)
advice(Data)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

Data is any data set in the iddata format.

The command gives text information to the Command Window about the data 
set or the model. Typical advice given is

• For data sets, 

- The excitation level of the signals and what consequences this has for what 
model orders can be supported (see also pexcit)

- Whether detrending should be applied

- Presence of output feedback in the data, and its consequences (see also 
feedback)

• For models,

- Whether the model appears to have captured the essential dynamics of the 
system, and/or the disturbance characteristics

- Whether the model seems to be of unnecessarily high order

- Whether significant feedback effects in the validation data can be detected 

See Also feedback, pexcit



aic

4-20

4aicPurpose Akaike Information Criterion for estimated model

Syntax am = aic(Model1,Model2,...)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

am is returned as a row vector with the values of Akaike’s Information Criterion 
(AIC) for each of the models. The AIC is given as

where V is the loss function, d is the number of estimated parameters, and N 
is the number of estimation data values. 

Here 

(4-1)

where  is the parameter estimate. 

The AIC is formally defined as the value of the negative log-likelihood function 
at the estimated parameters plus the number of estimated parameters. The 
connection between this and the expressions above is as follows (cf (7.92)ff in 
Ljung (1999)):

If the disturbance source is Gaussian with covariance matrix , the logarithm 
of likelihood function is

Maximizing this analytically with regard to  gives, and then maximizing the 
result with regard to , gives 

where p is the number of outputs and V is defined by (Equation 4-1). After 
removing constants and suitable normalization, the desired expression is 
reached.
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References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo, fpe 
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4Algorithm PropertiesPurpose Algorithm properties affecting estimation process

Syntax idprops algorithm
m.algorithm

Description All the idmodel objects in the toolbox, idarx, idss, idpoly, idproc, and 
idgrey, have a property Algorithm, which is a structure that contains a 
number of options that govern the estimation algorithms. The fields of this 
structure can be individually set and retrieved in the usual way, such as 
get(m,'MaxIter') or m.SearchDirection = 'gn'. Also, autofill applies and 
the names are case insensitive. 

Note  Algorithm is a property of idmodel. Any algorithm property can be 
separately set as above. Also, if you have a standard algorithm setup that you 
prefer, you can set those properties simultaneously, as in 
m = pem(Data,mi,'alg',myalg).

Note  The algorithm properties, like all other model properties, are inherited 
by the resulting model m. If you continue the estimation using m as the initial 
model, all previously set algorithm features will thus apply, unless you specify 
otherwise.

The fields of Algorithm are as follows:

Applying to All Estimation Methods

• Focus: This property affects the weighting applied to the fit between the 
model and the data. It can be used to assure that the model approximates the 
true system well over certain frequency intervals. Focus can assume the 
following values:

- 'Prediction': This is the default and means that the model is determined 
by minimizing the prediction errors. It corresponds to a frequency 
weighting that is given by the input spectrum times the inverse noise 
model. Typically, this favors a good fit at high frequencies. From a 
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statistical variance point of view, this is the optimal weighting, but then 
the approximation aspects (bias) of the fit are neglected.

- 'Simulation': This means that frequency weighting of the transfer 
function fit is given by the input spectrum. Frequency ranges where the 
input has considerable power will thus be better described by the model. 
In other words, the model approximation is such that the model will 
produce as good simulations as possible, when applied to inputs with the 
same spectra as used for the estimation. For models that have no 
disturbance model, that is y = G u + e, (A=C=D=1 for idpoly models and 
K = 0 for idss models) there is no difference between 'Simulation' and 
'Prediction'. For models with a disturbance description, that is,  y = Gu 
+ H e, G is first estimated with H = 1 and then H is estimated by a 
prediction error method, keeping the estimated transfer function  fixed. 
This option also guarantees a stable transfer function G.

- 'Stability': The resulting model is guaranteed to be stable, but a 
prediction weighing is still maintained. Note that forcing the model to be 
stable could mean that a bad model is obtained. Use only when you know 
the system to be stable.

- A row vector or matrix defining passbands:
[wl,wh] or [w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh define upper and lower limits for a passband. With 
several rows, the union of passbands defined be each row is obtained. The 
fit between data and model will the be focused on the passband(s) thus 
defined.

- Any SISO linear filter: The transfer function from input to output is 
determined by a frequency fit with this filter times the input spectrum as 
weighting function. The disturbance model is determined by a prediction 
error method, keeping the transfer function estimate fixed, as in the 
simulation case. To obtain a good model fit over a special frequency range, 
the filter should thus be chosen with a passband over this range. For a 
model with no disturbance model, the result is the same as first applying 
prefiltering to data using idfilt. The filter can be specified in a few 
different ways as

Any single-input-single-output idmodel

An ss, tf, or zpk model from the Control System Toolbox

{A,B,C,D} with the state-space matrices for the filter

Ĝ
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{numerator, denominator} with the transfer function 
numerator/denominator of the filter

- For frequency-domain data, 'Focus' can also be given as a column vector 
of weights. The vector must be of the same size as Data.Frequency. Each 
input and output response in the data is then multiplied by the 
corresponding weight at the respective frequencies.

• MaxSize: No matrix with more than MaxSize elements is formed by the 
algorithm, whenever possible. Instead, for loops are used. MaxSize thus 
decides the memory/speed tradeoff, and can prevent slow use of virtual 
memory. MaxSize can be any positive integer, but the input-output data 
must contain fewer than MaxSize elements. The default value of MaxSize is 
'Auto', which means that the value is determined in the M-file idmsize. You 
can edit this file to optimize speed on a particular computer. Generally 
speaking, MaxSize does not affect the numerical properties of the estimate. 
The only exception is when you use InitialState = 'backcast' for 
frequency-domain data. Then the frequency ranges where the backcasting 
takes place may depend on MaxSize, resulting in slightly different estimates.

• FixedParameter: A list of parameters that will be kept fixed to the 
nominal/initial values and not estimated. This is a vector of integers 
containing the indices of the fixed parameters. The numbering of the 
parameters is the same as in the model property 'ParameterVector'. The 
parameter names from the property 'PName' can also be used. For structured 
state-space models, it is easier to fix/unfix parameters by the structure 
matrices As, Bs, etc. See idss. When you use parameter names to specify the 
fixed parameters, Fixedparameter is a cell array of strings. The strings can 
contain the wildcards '*' (meaning any continuation of the given string) and 
'?' (meaning any character). For example, if all disturbance model 
parameters start with 'k', FixedParameter = {'k*'} will fix all these 
parameters. The function setpname can be useful in this context.

Applying to n4sid, Estimating State-Space Models 
These also apply to pem for estimating black-box state-space models, since 
these are initialized by the n4sid estimate.

• N4Weight: This property determines some weighting matrices used in the 
singular-value decomposition that is a central step in the algorithm. Two 
choices are offered: 'MOESP', which corresponds to the MOESP algorithm by 
Verhaegen, and 'CVA', which is the canonical variable algorithm by 
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Larimore. See the reference page for n4sid. The default value is 'N4Weight' 
= 'Auto', which gives an automatic choice between the two options.

• N4Horizon: Determines the prediction horizons forward and backward used 
by the algorithm. This is a row vector with three elements: 
N4Horizon = [r sy su], where r is the maximum forward prediction 
horizon; that is, the algorithm uses up to r step-ahead predictors. sy is the 
number of past outputs, and su is the number of past inputs that are used for 
the predictions. For an exact definition of these integers, see pages 209 and 
210 in Ljung (1999), where they are called r, s1, and s2. These numbers can 
have a substantial influence on the quality of the resulting model, and there 
are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix 
means that each row of 'N4Horizon' is tried, and the value that gives the 
best (prediction) fit to data is selected. (This option cannot be combined with 
selection of model order.) If you specify only one column in 'N4Horizon', the 
interpretation is r=sy=su. The default choice is 'N4Horizon' = 'Auto', 
which uses an Akaike Information Criterion (AIC) for the selection of sy and 
su.

Applying to Estimation Methods Using Iterative Search for Minimizing a 
Criterion, That Is, armax, bj, oe, and pem

• Trace: This property determines the information about the iterative search 
that is provided to the MATLAB Command Window.

- 'Trace' = 'Off': No information is written to the screen.

- 'Trace' = 'On': Information about criterion values and the search 
process is given for each iteration.

- 'Trace' = 'Full': The current parameter values and the search direction 
are also given (except in the 'Free' SSParameterization case for idss 
models).

• LimitError: This variable determines how the criterion is modified from 
quadratic to one that gives linear weight to large errors. Errors larger than 
LimitError times the estimated standard deviation will carry a linear 
weight in the criterions.The default value of LimitError is 1.6. 
LimitError = 0 disables the robustification and leads to a purely quadratic 
criterion. The standard deviation is estimated robustly as the median of the 
absolute deviations from the median, divided by 0.7. (See Equations (15.9) 
and (15.10) in Ljung (1999).) When estimating with frequency-domain data, 
LimitError is set to zero.
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• MaxIter: The maximum number of iterations performed during the search 
for minimum. The iterations stops when MaxIter is reached or some other 
stopping criterion is satisfied. The default value of MaxIter is 20. Setting 
MaxIter = 0 returns the result of the startup procedure. The actual number 
of used iterations is given by the property EstimationInfo.Iterations.

• Tolerance: Based on the Gauss-Newton vector computed at the current 
parameter value, an estimate is made of the expected improvement of the 
criterion at the next iteration. When this expected improvement is less than 
Tolerance, measured in percent, the iterations are stopped. Default value is 
0.01.

• SearchDirection: The direction along which a line search is performed to 
find a lower value of the criterion function. It may assume the following 
values:

- 'gn': The Gauss-Newton direction (inverse of the Hessian times the 
gradient direction). If no improvement is found along this direction, the 
gradient direction is also tried.

- 'gns': A regularized version of the Gauss-Newton direction. Eigenvalues 
less than GnsPinvTol (see “Advanced” below) of the Hessian are neglected, 
and the Gauss-Newton direction is computed in the remaining subspace.

- 'gna': An adaptive version of gns, suggested by Wills and Ninness (IFAC 
World congress, Prague 2005). Eigenvalues less than gamma*max(sv)   of 
the Hessian are neglected , where sv  are the singular values of the 
Hessian. The Gauss-Newton direction is computed in the remaining 
subspace. gamma has the initial value InitGnaTol (see below) and is 
increased by a factor LmStep each time the search fails to find a lower 
value of the criterion in less than 5 bisections. It is decreased by a factor 
2LmStep each time a search is successful without any bisections.  

- 'lm': The Levenberg-Marquardt method is used. This means that the next 
parameter value is -pinv(H+d*I)*grad from the previous one, where H is 
the Hessian, I is the identity matrix, and grad is the gradient. d is a 
number that is increased until a lower value of the criterion is found.

- 'Auto': A choice among the above is made in the algorithm. This is the 
default choice.

• Advanced: This is a structure that contains detailed algorithm choices that 
normally the user does not need to get involved in. For detailed explanations, 
you must examine the code. 'Advanced' has the following fields:
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- Search: Contains fields with relevance for the iterative search:
a GnsPinvTol: The tolerance for the pseudoinverse used to compute the gns 

direction. See above. Default is 10^-9.

b InitGnaTol: The initial value of gamma in the gna search algorithm. 
Default is InitGnaTol =10^-4

c LmStep: The next value of d in the LM method is lmstep times the 
previous one. Default is LmStep = 2.

d StepReduction: In the line search used for  directions other than LM, the 
step is reduced by the factor StepReduction in each try. Default is 
StepReduction = 2.

e MaxBisection: The maximum number of bisections used by the line 
search along the search direction. Default is 25.

f LmStartValue: The starting value of d in the LM method. Default is 
0.001.

g RelImprovement: The iterations are stopped if the relative improvement 
of the criterion is less than RelImprovement. Default is 
RelImprovement = 0.

- Threshold: Contains fields with thresholds for several tests:
a Sstability: used for stability test of continuous-time models. Model is 

considered stable if its rightmost pole is to the left of Sstability. Default 
is 0.

b Zstability: used for stability test of discrete-time models. Model is 
considered stable if all poles are within the distance Zstability from the 
origin. Default is 1.01. 

- AutoInitialState: When InitialState = 'Auto', the state is estimated 
if the ratio of the prediction error norm with zero initial state to the norm 
with estimated initial state exceeds AutoInitialState. Default is 1.2.

References For the iterative minimization, see Dennis, J.E., Jr., and R.B. Schnabel, 
Numerical Methods for Unconstrained Optimization and Nonlinear Equations, 
Prentice Hall, Englewood Cliffs, N.J., 1983.

For a general reference to the identification algorithms, see Ljung (1999), 
Chapter 10.

See Also armax, bj, EstimationInfo, n4sid, oe, pem
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4arPurpose Estimate parameters of AR model for scalar time series

Syntax m = ar(y,n)
[m ,refl] = ar(y,n,approach,window)
[m,refl] = ar(y,n,approach,window,Prop1,Value1,Prop2,Value2,...)

Description The parameters of the AR model structure

are estimated using variants of the least squares method.

The iddata object y contains the time-series data (just one output channel). 
The scalar n specifies the order of the model to be estimated (the number of A 
parameters in the AR model).

Note that the routine is for scalar time series only. For multivariate data use 
arx.

The estimate is returned in m and stored as an idpoly model. For the two 
lattice-based approaches, 'burg' and 'gl' (see below), the variable refl is 
returned, containing the reflection coefficients in the first row and the 
corresponding loss function values in the second. The first column is the 
zeroth-order model, so that the (2,1) element of refl is the norm of the time 
series itself.

Variable approach allows you to choose an algorithm from a group of several 
popular techniques for computing the least squares AR model. Available 
methods are as follows:

approach = 'fb': The forward-backward approach. This is the default 
approach. The sum of a least squares criterion for a forward model and the 
analogous criterion for a time-reversed model is minimized.

approach = 'ls': The least squares approach. The standard sum of squared 
forward prediction errors is minimized.

approach = 'yw': The Yule-Walker approach. The Yule-Walker equations, 
formed from sample covariances, are solved.

approach = 'burg': Burg’s lattice-based method. The lattice filter equations 
are solved using the harmonic mean of forward and backward squared 
prediction errors.

A q( )y t( ) e t( )=
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approach = 'gl': A geometric lattice approach. As in Burg’s method, but the 
geometric mean is used instead of the harmonic one. 

Windowing, within the context of AR modeling, is a technique for dealing with 
the fact that information about past and future data is lacking. There are a 
number of variants available:

window = 'now': No windowing. This is the default value, except when 
approach = 'yw'. Only actually measured data are used to form the 
regression vectors. The summation in the criteria starts only at time n.

window = 'prw': Prewindowing. Missing past data are replaced by zeros, so 
that the summation in the criteria can be started at time zero.

window = 'pow': Postwindowing. Missing end data are replaced by zeros, so 
that the summation can be extended to time N + n (N being the number of 
observations).

window = 'ppw': Pre- and postwindowing. This is used in the Yule-Walker 
approach.

The combinations of approaches and windowing have a variety of names. The 
least squares approach with no windowing is also known as the covariance 
method. This is the same method that is used in the arx routine. The MATLAB 
default method, forward-backward with no windowing, is often called the 
modified covariance method. The Yule-Walker approach, least squares plus 
pre- and postwindowing, is also known as the correlation method. 

Possible property name/property value pairs are

- 'MaxSize'/Integer. See Algorithm Properties for an explanation of 
maxsize.

- 'Ts'/Real positive number. Setting the sampling time (overriding the 
sampling time of y.

- 'Covariance'/'None': Suppressing the calculation of the covariance 
matrix.

Examples Compare the spectral estimates of Burg’s method with those found from the 
forward-backward nonwindowed method, given a sinusoid in noise signal. 

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
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mfb = ar(y,4);
bode(mb,mfb)

References Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice Hall, 
Englewood Cliffs, 1987, Chapter 8.

See Also arx, etfe, ivar, spa
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4armaxPurpose Estimate parameters of ARMAX or ARMA model 

Syntax m = armax(data,orders)
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk)
m = armax(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description armax returns m as an idpoly object with the resulting parameter estimates, 
together with estimated covariances.

armax estimates the parameters of the ARMAX model structure

using a prediction error method.

data is an iddata object containing the output-input data. Only time domain 
data are supported by armax. Use oe for frequency-domain data instead. The 
model orders can be specified as (...,'na',na,'nb',nb,...) or by setting the 
argument orders to

orders = [na nb nc nk]

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is 
the delay. Specifically,

Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the ARMAX model given in idpoly format. See 
“Polynomial Representation of Transfer Functions” on page 3-11 for more 
information.

For multiinput systems, nb and nk are row vectors, such that the kth entry 
corresponds to the order and delay associated with the kth input.

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

na:        A q( ) 1 a1q 1– … anaq na–+ + +=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nc:        C q( ) 1 c1q 1– … cncq nc–+ + +=
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If data has no input channels and just one output channel (that is, it is a time 
series), then 

orders = [na nc]

and armax calculates an ARMA model for the time series

The structure and the estimation algorithm are affected by any property 
name/property value pairs that are set in the input argument list. Useful 
properties are 'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance', 
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for details of these properties 
and their possible values.

armax does not support multioutput models. Use the state-space model for this 
case (see n4sid and pem).

Algorithm A robustified quadratic prediction error criterion is minimized using an 
iterative search algorithm, whose details are governed by the properties 
'SearchDirection', 'MaxIter', 'Tolerance', and 'Advanced'. The iterations 
are terminated when MaxIter is reached, when the expected improvement is 
less than Tolerance, or when a lower value of the criterion cannot be found. 
Information about the search is contained in m.EstimationInfo.

The initial parameter values for the iterative search, if not specified in orders, 
are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the property LimitError as 
well as on the estimated standard deviation of the residuals from the initial 
parameter estimate. It is not recalculated during the minimization.

A stability test of the predictor is performed to ensure that only models 
corresponding to stable predictors are tested. Generally, both  and  
(if applicable) must have all their zeros inside the unit circle.

Information about the minimization is furnished to the screen in case the 
property 'Trace' is set to 'On' or 'Full'. With 'Trace' = 'Full', current and 
previous parameter estimates (in column vector form, listing parameters in 
alphabetical order) as well as the values of the criterion function are given. The 

A q( )y t( ) C q( )e t( )=

C q( ) Fi q( )
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Gauss-Newton vector and its norm are also displayed. With 'Trace' = 'On' 
just criterion values are displayed.

References Ljung (1999), Section 10.2.

See Also arx, bj, idmodel, idpoly, oe, pem, Algorithm Properties, EstimationInfo
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4arxPurpose Estimate parameters of ARX or AR model using least squares

Syntax m = arx(data,orders)
m = arx(data,'na',na,'nb',nb,'nk',nk)
m= arx(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description The parameters of the ARX model structure

are estimated using the least squares method.

data is an iddata object that contains the output-input data. Both time and 
frequency-domain signals are supported, and data can also be a frd or idfrd 
frequency-response data object. However, multioutput continuous-time models 
are not supported by arx.

orders is given as

orders = [na nb nk]

defining the orders and delay of the ARX model. Specifically, in discrete time

See “Polynomial Representation of Transfer Functions” on page 3-11 for more 
information. The model orders can also be defined by explicit pairs 
(...,'na',na,'nb',nb,'nk',nk,...).

m is returned as the least squares estimates of the parameters. For 
single-output data this is an idpoly object, otherwise an idarx object.

For a time series, data contains no input channels and orders = na. Then an 
AR model of order na for y is computed.

Models with several inputs

A q( )y t( ) B q( )u t nk–( ) e t( )+=

na:        A q( ) 1 a+ 1q 1– … anaq na–+ +=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

A q( )y t( ) e t( )=

A q( )y t( ) B1 q( )u1 t nk1–( ) …Bnu q( )unu t nknu–( ) e t( )+ +=
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are handled by allowing nb and nk to be row vectors defining the orders and 
delays associated with each input.

Multioutput Models
Models with several inputs and several outputs are handled by allowing na, nb, 
and nk to contain one row for each output number. See “Multivariable ARX 
Models: the idarx Model” on page 3-43 for exact definitions. In the multioutput 
case, arx minimizes the trace of the prediction error covariance matrix, that is, 
the norm

This can be changed to an arbitrary quadratic norm

with a weighting matrix Lambda, by

m = arx(data,orders,'NoiseVariance', Lambda)

In general arx can be called with another ARX model m_initial as an 
argument.

m = arx(data,m_initial)

Then the orders and the weighting matrix for the prediction errors are taken 
from m_initial. You can further modify m_initial by adding a list of property 
name/property value pairs to the arguments. This is especially useful if some 
parameters should be fixed by 'FixedParameter'.

Continuous-Time Models
For models with one output, continuous-time models can be estimated from 
continuous-time (frequency-domain) data. The orders are then interpreted as 
na being the number of estimated denominator coeffcients and nb being the 
number of estimated numerator coefficients. This means that na = 4, nb = 2 
gives the model

eT t( )e t( )

t 1=

N

∑

eT t( )Λ 1– e t( )

t 1=

N

∑
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For continuous-time models, the delay parameters nk have no meaning and 
should be omitted. Note that

• It is often useful to limit the fit to a smaller frequency range when using 
continuous-time data:
m = arx(datac,[na nb],'focus',[0 wh])

• Estimating continuous-time ARX models often gives some bias. It might be 
better to use the oe method.

Further Options
The algorithm and model structure are affected by the property name/property 
value list in the input argument.

Useful options are reached by the properties 'Focus', 'InputDelay', 
'FixedParameter', and 'MaxSize'.

For time-domain data the signals are shifted, so that unmeasured signals are 
never required in the predictors. There is thus no need to estimate initial 
conditions in that case. For frequency-domain data, however, adjusting the 
data by “initial conditions” that support circular convolution may be necessary. 
See “Initial States for Frequency Domain Data” on page 3-101.

It is then helpful to use the property name/property value pair 
'InitialState'/init, where init is one of 'zero', 'estimate', or 'auto'. 
The default is 'auto', which makes a data-dependent choice between 'zero' 
(no adjustment) and 'estimate'.

See Algorithm Properties for details of these properties and possible values.

When the true noise term  in the ARX model structure is not white noise 
and na is nonzero, the estimate does not give a correct model. It is then better 
to use armax, bj, iv4, or oe.

Algorithm The least squares estimation problem is an overdetermined set of linear 
equations that is solved using QR factorization.

G s( )
b1s b2+

s4 a1s3 a2s2 a3s a4+ + + +
-----------------------------------------------------------------------=

e t( )
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The regression matrix is formed so that only measured quantities are used (no 
fill-out with zeros). When the regression matrix is larger than MaxSize, the QR 
factorization is performed in a for loop.

Examples Here is an example that generates data and estimates an ARX model.

A = [1  -1.5  0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);

See Also ar, ivx, iv4, Algorithm Properties, EstimationInfo
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4arxdataPurpose ARX parameters with variance information from idmodel models

Syntax [A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Description m is the model as an idarx or idpoly model object. arxdata works on any idarx 
model. For idpoly it gives an error unless the underlying model is an ARX 
model, that is, the orders nc=nd=nf=0. (See the reference page for idpoly.)

A and B are returned in the standard multivariable ARX format (see idarx), 
describing the model.

Here  and  are matrices of dimensions ny-by-ny and ny-by-nu, 
respectively. (ny is the number of outputs, that is, the dimension of the vector 

, and nu is the number of inputs.) See “Multivariable ARX Models: the 
idarx Model” on page 3-43.

The arguments A and B are 3-D arrays that contain the A matrices and the B 
matrices of the model in the following way:

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that leading entries in 
B equal to zero means delays in the model. For a time series, B = [].

dA and dB are the estimated standard deviations of A and B.

See Also idarx

y t( ) A1y t 1–( ) A2y t 2–( ) … Anay t na–( )+ + + + =

B0u t( ) B1u t 1–( ) … Bnbu t nb–( ) e t( )+ + + +

Ak Bk

y t( )
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4arxstrucPurpose Compute loss functions for set of different model structures of single-output 
ARX type

Syntax V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type. 
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy 
generation of typical NN matrices for single-input systems.

Each of ze and zv is an iddata object containing output-input data. 
Frequency-domain data and idfrd objects are also supported. Models for each 
of the model structures defined by NN are estimated using the data set ze. The 
loss functions (normalized sum of squared prediction errors) are then computed 
for these models when applied to the validation data set zv. The data sets ze 
and zv need not be of equal size. They could, however, be the same sets, in 
which case the computation is faster.

Note that arxstruc is intended for single-output systems only.

The output argument V is best analyzed using selstruc. It contains the loss 
functions in its first row. The remaining rows of V contain the transpose of NN, 
so that the orders and delays are given just below the corresponding loss 
functions. The last column of V contains the number of data points in ze. The 
selection of a suitable model structure based on the information in v is 
normally done using selstruc. See “Model Structure Selection and Validation” 
on page 3-70 for advice on model structure selection and cross validation.

See Algorithm Properties for an explanation of maxsize.

Examples Compare first- to fifth-order models with one delay using cross validation on 
the second half of the data set. Then select the order that gives the best fit to 
the validation data set.

NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);
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See Also arx, ivstruc, n4sid, selstruc, struc
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4balredPurpose Reduce model order (requires Control System Toolbox)

Syntax MRED = balred(M)
MRED = balred(M,ORDER,'DisturbanceModel','None')

Description This function reduces the order of any model M given as an idmodel object. The 
resulting reduced-order model, MRED, is an idss model.

The function requires several routines in the Control System Toolbox.

ORDER: The desired order (dimension of the state-space representation). If 
ORDER = [], which is the default, a plot shows how the diagonal elements of the 
observability and controllability Gramians of a balanced realization decay with 
the order of the representation. You are then prompted to select an order based 
on this plot. The idea is that such a small element  has a negligible influence 
on the input-output behavior of the model. We recommend that you choose an 
order such that only large elements in these matrices are retained.

'DisturbanceModel': If the property DisturbanceModel is set to 'None', then 
an output-error model MRED is produced: that is, one with the Kalman gain 
equal to zero (see Equation 3-23 in “Chapter 3, “Tutorial”). Otherwise (default),  
the disturbance model is also reduced.

The function recognizes whether M is a continuous- or discrete-time model and 
performs the reduction accordingly. The resulting model, MRED, is similar to M 
in this respect.

There are several options for how the reduction is performed: AbsTol, RelTol, 
Offset, Elimination.

Algorithm The function balred from the Control System Toolbox is used. The plot, in case 
ORDER = [], shows the vector g returned by balreal.

Examples Build a high-order multivariable ARX model, reduce its order to 3, and 
compare the frequency responses of the original and reduced models:

M = arx(data,[4∗ones(3,3),4∗ones(3,2),ones(3,2)]);
MRED = balred(M,3);
bode(M,MRED)

Use the reduced-order model as an initial condition for a third-order 
state-space model.
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M2 = pem(data,MRED);

See Also balreal
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4bjPurpose Estimate parameters of Box-Jenkins model

Syntax m = bj(data,orders)
m = bj(data,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = bj(data,orders,'Property1',Value1,'Property2',Value2,...)

Description bj returns m as an idpoly object with the resulting parameter estimates, 
together with estimated covariances. The bj function estimates parameters of 
the Box-Jenkins model structure

using a prediction error method.

data is an iddata object containing the output-input data. Frequency-domain 
signals are not supported by bj. Use oe instead. 

The model orders can be specified by setting the argument orders to

orders = [ nb nc nd nf nk]

The parameters nb, nc, nd, and nf are the orders of the Box-Jenkins model and 
nk is the delay. Specifically, 

The orders can also be defined as property name/property value pairs 
(...,'nb',nb,...). Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the Box-Jenkins model given in idpoly format. 
See “Polynomial Representation of Transfer Functions” on page 3-11 for more 
information.

y t( ) B q( )
F q( )
------------u t nk–( ) C q( )

D q( )
-------------e t( )+=

nf:        F q( ) 1 f+ 1q 1– … fnfq
nf–+ +=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nc:        C q( ) 1 c+ 1q 1– … cncq nc–+ +=

nd:        D q( ) 1 d+ 1q 1– … dndq nd–+ +=
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For multiinput systems, nb, nf, and nk are row vectors with as many entries as 
there are input channels. Entry number i then describes the orders and delays 
associated with the ith input.

The structure and the estimation algorithm are affected by any property 
name/property value pairs that are set in the input argument list. Useful 
properties are 'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance', 
'LimitError', and 'FixedParameter'.

See Algorithm Properties and the reference pages for idmodel and idpoly for 
details of these properties and their possible values.

bj does not support multioutput models. Use a state-space model for this case 
(see n4sid and pem).

Examples Here is an example that generates data and stores the results of the startup 
procedure separately.

B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
m0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200)); 
y = sim(m0,[u e]);
z = [y u];
mi = bj(z,[2 2 2 2 1],'MaxIter',0)
m = bj(z,mi,'Maxi',10)
m.EstimationInfo
m = bj(z,m); % Continue if m.es.WhyStop shows that maxiter has 

% been reached.
compare(z,m,mi)

Algorithm bj uses essentially the same algorithm as armax with modifications to the 
computation of prediction errors and gradients.

See Also armax, idmodel, idpoly, oe, pem 
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4bodePurpose Plot frequency functions in Bode diagram form with confidence regions

Syntax bode(m)
[mag,phase,w] = bode(m)
[mag,phase,w,sdmag,sdphase] = bode(m)
bode(m1,m2,m3,...,w)
bode(m1,'PlotStyle1',m2,'PlotStyle2',...)
bode(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)
bode(m1,m2,m3,'sd',sd,'mode',mode,'ap',ap,'fill')

Description bode computes the magnitude and phase of the frequency response of idmodel 
and idfrd models. When invoked without left-hand arguments, bode produces 
a Bode plot on the screen.

bode(m) plots the Bode response of an arbitrary idmodel or idfrd model m. This 
model can be continuous or discrete, and SISO or MIMO. The InputNames and 
OuputNames properties of the models are used to plot the responses for different 
I/O channels in separate plots. Pressing the Enter key advances the plot from 
one input-output pair to the next one. Typing Ctrl+C aborts the plotting in an 
orderly fashion

If m contains information about both I/O channels and output noise spectra, 
only the I/O channels are shown. To show the output noise spectra, enter 
m('n') ('n' for 'noise') in the model list. Analogously, you can select specific 
I/O channels with normal subreferencing m(ky,ku).

Argument w
bode(m,w) explicitly specifies the frequency range or frequency points to be 
used for the plot or for computing the response.

To focus on a particular frequency interval [wmin,wmax], set w = {wmin,wmax} 
(notice the curly brackets). This plots the response for 100 frequency points 
logarithmically spaced from wmin to wmax. You can change this to NP points by 
using w = {wmin,wmax,NP}.

To use particular frequency points, set w to the vector of desired frequencies. 
Use logspace to generate logarithmically spaced frequency vectors. All 
frequencies should be specified in rad/s.
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Note that the frequencies cannot be specified for idfrd objects. For those the 
plot and response are calculated for the internally stored frequencies. 
However, the plot is restricted to the range {wmin,wmax} if this is specified.

If no frequency range is specified, a default choice is made based on the 
dynamics of the model.

Property Name/Property Value Pairs 'sd'/sd, 'ap'/ap, and 'mode'/mode
The pairs can appear in any order or be omitted.

• sd: If sd is specified as a number larger than zero, confidence intervals for 
the functions are added to the graph as dash-dotted curves (of the same color 
as the estimate curve). They indicate the confidence regions corresponding to 
sd standard deviations. If an argument 'fill' is included in the argument 
list, the confidence region is marked as a filled band instead.

• ap: By default, amplitude and phase plots are shown simultaneously for each 
I/O channel present in m. For spectra, phase plots are omitted. To show 
amplitude plots only, use ap = 'A'. For phase plots only, use ap = 'P'. The 
default is ap = 'B' for both plots. 

• mode: To obtain all input/output plots in the same diagram use 
mode = 'same'.

Several Models
bode(m1,m2,...,mN) or bode(m1,m2,...mN,w) plots the Bode response of 
several idmodel or idfrd models on a single figure. The models can be mixes of 
different sizes and continuous/discrete. The sorting of the plots is based on the 
InputNames and OutputNames. If the frequencies w are specified, these will 
apply to all non-idfrd models in the list. If you want different frequencies for 
different models, you should thus first convert them to idfrd objects using the 
idfrd command.

bode(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies which color, 
line style, and/or marker should be used to plot each system, as in

bode(m1,'r--',m2,'gx')

Arguments The output argument w contains the frequencies for which the response is 
given, whether specified among the input arguments or not. The output 
arguments mag and phase are 3-D arrays with dimensions
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(number of outputs)x(number of inputs)x(length of w)

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and 
phase (in degrees) at the frequency = w(k). To obtain the result as a normal 
vector of responses, use mag = mag(:) and phase = phase(:).

For MIMO systems, mag(i,j,k) is the magnitude of the frequency response at 
frequency w(k) from input j to output i, and similarly for phase(i,j,k).

If sdmag and sdphase are specified, the standard deviations of the magnitude 
and phase are also computed. Then sdmag is an array of the same size as mag, 
containing the estimated standard deviations of the response, and analogously 
for sdphase.

See Also etfe, freqresp, idfrd, nyquist, spa, spafdr 

ωk
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4comparePurpose Compare measured outputs with model outputs

Syntax compare(data,m);
compare(data,m,k)
compare(data,m,k,'Samples',sampnr,'InitialState',init,'OutputPlots

',Yplots)
compare(data,m1,m2,...,mN)
compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN')
[yh,fit,x0] = compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN',k)

Description data is the output-input data in the usual iddata object format. data can also 
be an idfrd object with frequency-response data.

compare computes the output yh that results when the model m is simulated 
with the input u. The result is plotted together with the corresponding 
measured output y. The percentage of the output variation that is explained by 
the model

fit = 100*(1 - norm(yh - y)/norm(y-mean(y))) 

is also computed and displayed. For multioutput systems, this is done 
separately for each output. For frequency-domain data (or in general for 
complex valued data) the fit is still calculated as above, but only the absolute 
values of y and yh are plotted.

When the argument k is specified, the k step-ahead prediction of y according to 
the model m are computed instead of the simulated output. In the calculation of 

, the model can use outputs up to time : , ,  
(and inputs up to the current time t). The default value of k is inf, which gives 
a pure simulation from the input only. Note that for frequency-domain data, 
only simulation (k = inf) is allowed, and for time-series data (no input) only 
prediction (k not inf) is possible.

Property Name/Property Value Pairs
The optional property name/property value pairs 'Samples'/sampnr, 
'InitialState'/init, and 'OutputPlots'/Yplots can be given in any order.

The argument Yplots can be a cell array of strings. Only the outputs with 
OutputName in this array are plotted, while all are used for the necessary 
computations. If Yplots is not specified, all outputs are plotted.

yh t( ) t k– y s( ) s, t k–= t k– 1– …
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The argument sampnr indicates that only the sample numbers in this row 
vector are plotted and used for the calculation of the fit. The whole data record 
is used for the simulation/prediction. 

The argument init determines how to handle initial conditions in the models:

• init = 'e' (for 'estimate') estimates the initial conditions for best fit.

• init = 'm' (for 'model') used the model’s internally stored initial state.

• init = 'z' (for 'zero') uses zero initial conditions.

• init = x0, where x0 is a column vector of the same size as the state vector 
of the models, uses x0 as the initial state.

• init = 'e' is the default.

Several Models
When several models are specified, as in compare(data,m1,m2,...,mN), the 
plots show responses and fits for all models. In that case data should contain 
all inputs and outputs that are required for the different models. However, 
some models might correspond to subselections of channels and might not need 
all channels in data. In that case the proper handling of signals is based on the 
InputNames and OutputNames of data and the models.

With compare(data,m1,'PlotStyle1',...mN,'PlotStyle2'), the color, line 
style, and/or marker can be specified for the curves associated with the 
different models. The markers are the same as for the regular plot command. 
For example,

compare(data,m1,'g_*',m2,'r:')

If data contains several experiments, separate plots are given for the different 
experiments. In this case sampnr, if specified, must be a cell array with as many 
entries as there are experiments.

Arguments When output arguments [yh,fit,x0] = compare(data,m1,..,mN) are 
specified, no plots are produced.

yh is a cell array of length equal to the number of models. Each cell contains 
the corresponding model output as an iddata object.

fit is, in the general case, a 3-D array with fit(kexp,kmod,ky) containing the 
fit (computed as above) for output ky, model kmod, and experiment kexp.
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x0 is a cell array, such that x0{kmod} is the estimated initial state for model 
number kmod. If data is multiexperiment, X0{kmod} is a matrix whose column 
number kexp is the initial state vector for experiment number kexp.

Examples Split the data record into two parts. Use the first one for estimating a model 
and the second one to check the model’s ability to predict six steps ahead.

ze = z(1:250);
zv = z(251:500);
m= armax(ze,[2 3 1 0]);
compare(zv,m,6);
compare(zv,m,6,'Init','z') % No estimation of the initial state.

See Also sim, predict
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4covfPurpose Estimate time-series covariance functions

Syntax R = covf(data,M)
R = covf(data,M,maxsize)

Description data is an iddata object and M is the maximum delay -1 for which the 
covariance function is estimated. The routine is intended for time-domain data 
only.

Let z contain the output and input channels

where y and u are the rows of data.OutputData and data.InputData, 
respectively, with a total of nz channels.

R is returned as an nz2 -by- M matrix with entries

where  is the jth row of z, and missing values in the sum are replaced by zero.

The optional argument maxsize controls the memory size as explained under 
Algorithm Properties.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)∗z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex data 
is handled. The expectation symbol E corresponds to the sample means.

Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier 
transform technique is applied. Otherwise, straightforward summing is used.

See Also spa

z t( ) y t( )
u t( )

=

R i j 1–( )nz k 1+,+( ) 1
N
---- zi t( )zj t k+( )

t 1=

N

∑ R̂ij k( )= =

zj
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4craPurpose Prewhitened-based correlation analysis and impulse response

Syntax cra(data);
[ir,R,cl] = cra(data,M,na,plot);
cra(R);

Description data is the output-input data given as an iddata object. The routine is 
intended for time-domain data only.

The routine only handles single-input-single-output data pairs. (For the 
multivariate case, apply cra to two signals at a time, or use impulse.) cra 
prewhitens the input sequence; that is, cra filters u through a filter chosen so 
that the result is as uncorrelated (white) as possible. The output y is subjected 
to the same filter, and then the covariance functions of the filtered y and u are 
computed and graphed. The cross correlation function between (prewhitened) 
input and output is also computed and graphed. Positive values of the lag 
variable then correspond to an influence from u to later values of y. In other 
words, significant correlation for negative lags is an indication of feedback from 
y to u in the data.

A properly scaled version of this correlation function is also an estimate of the 
system’s impulse response ir. This is also graphed along with 99% confidence 
levels. The output argument ir is this impulse response estimate, so that its 
first entry corresponds to lag zero. (Negative lags are excluded in ir.) In the 
plot, the impulse response is scaled so that it corresponds to an impulse of 
height 1/T and duration T, where T is the sampling interval of the data.

The output argument R contains the covariance/correlation information as 
follows: 

• The first column of R contains the lag indices. 

• The second column contains the covariance function of the (possibly filtered) 
output. 

• The third column contains the covariance function of the (possibly 
prewhitened) input.

• The fourth column contains the correlation function. The plots can be 
redisplayed by cra(R). 

The output argument cl is the 99% confidence level for the impulse response 
estimate. 
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The optional argument M defines the number of lags for which the 
covariance/correlation functions are computed. These are from -M to M, so that 
the length of R is 2M+1. The impulse response is computed from 0 to M. The 
default value of M is 20.

For the prewhitening, the input is fitted to an AR model of order na. The third 
argument of cra can change this order from its default value na = 10. With 
na = 0 the covariance and correlation functions of the original data sequences 
are obtained.

plot: plot = 0 gives no plots. plot = 1 (the default) gives a plot of the 
estimated impulse response together with a 99% confidence region. plot = 2 
gives a plot of all the covariance functions.

An often better alternative to cra is the functions impulse and step, which use 
a high-order FIR model to estimate the impulse response.

Examples Compare a second-order ARX model’s impulse response with the one obtained 
by correlation analysis.

ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

See Also impulse, step



c2d

4-54

4c2dPurpose Convert model from continuous to discrete time

Syntax md = c2d(mc,T)
md = c2d(mc,T,method)
[md,G] = c2d(mc,T,method)

Description mc is a continuous-time model such as any idmodel object (idgrey, idproc, 
idpoly, or idss). md is the model that is obtained when it is sampled with 
sampling interval T. 

method = 'zoh' (default) makes the translation to discrete time under the 
assumption that the input is piecewise constant (zero-order hold).

method = 'foh' assumes the input to be piecewise linear between the sampling 
instants (first-order hold).

With the Control System Toolbox,  methods 'tustin', 'prewarp', and 
'matched' are also supported. In these cases the covariance matrix is not 
transformed.

Note that the innovations variance  of the continuous-time model is 
interpreted as the intensity of the spectral density of the noise spectrum. The 
noise variance in md is thus given as /T.

idpoly and idss models are returned in the same format. idgrey structures 
are preserved if their CDMfile property is equal to 'cd'. Otherwise they are 
transformed to idss objects. idproc models are returned as idgrey objects.

For idpoly models, the covariance matrix is translated by the use of numerical 
derivatives. The step sizes used for the differentiation are given by the function 
nuderst. For idss, idproc, and idgrey models, the covariance matrix is not 
translated, but covariance information about the input-output properties is 
included in md. To inhibit the translation of covariance information (which may 
take some time), use c2d(mc,T,'covariance','none'). 

The output argument G is a matrix that transforms the initial state x0 of mc to 
the initial state of md as 

X0d=G * [X0; u(0)],

 where u(0) is the input at time 0. For idproc models, the state variables 
correspond to those of idgrey(mc). For idpoly models, G is returned as the 
empty matrix.

λ

λ
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Examples Define a continuous-time system and study the poles and zeros of the sampled 
counterpart.

mc = idpoly(1,1,1,1,[1 1 0],'Ts',0);
md = c2d(mc,0.5);
pzmap(md)

See Also  d2c 



delayest

4-56

4delayestPurpose Estimate time delay (dead time) from data

Syntax nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description Data is an iddata object containing the input-output data. It can also be an 
idfrd object defining frequency-response data. Only single-output data can be 
handled.

nk is returned as an integer or a row vector of integers, containing the 
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different delays:

The integer na is the order of the A polynomial (default 2). nb is a row vector of 
length equal to the number of inputs, containing the order(s) of the B 
polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of inputs, 
containing the smallest and largest delays to be tested. Defaults are nkmin = 0 
and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiinput case, all 
inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).

y t( ) a1y t 1–( ) … anay t na–( ) …
b1u t nk–( ) … bnbu t nb– nk– 1+( )+ +

=+ + +
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4detrend Purpose Remove trends from output-input data

Syntax zd = detrend(z)
zd = detrend(z,o,brkp)

Description z is an iddata object containing the input-output data. detrend removes the 
trend from each signal and returns the result as an iddata object zd. 

The default (o = 0) removes the zeroth order trends; that is, the sample means 
are subtracted. If z is a frequency-domain data object, the response at 
frequency 0 is then set to zero,

With o = 1, linear trends are removed after a least squares fit. With brkp not 
specified, one single line is subtracted from the entire data record. A 
continuous piecewise linear trend is subtracted if brkp contains breakpoints at 
sample numbers given in a row vector.

Note that detrend for iddata objects differs somewhat from detrend in the 
Signal Processing Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample number 119, 
and remove the sample mean from the input.

zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];
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4diffPurpose Difference signals in iddata objects

Syntax zdi = diff(z)
zdi = diff(z,n)

Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this command 
to each of the input/output signals in z.
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4d2cPurpose Convert model from discrete to continuous time

Syntax mc = d2c(md)
mc = d2c(md,method)
mc = d2c(md,'CovarianceMatrix',cov,'InputDelay',inpd)

Description The discrete-time model md, given as any idmodel object, is converted to a 
continuous-time counterpart mc. The covariance matrix of the parameters in 
the model is also translated using the Gauss approximation formula and 
numerical derivatives of the transformation. The step sizes in the numerical 
derivatives are determined by the function nuderst. To inhibit the translation 
of the covariance matrix and save time, enter among the input arguments 
(...,'CovarianceMatrix,'None',....) (any abbreviations will do).

method is one of the input intersample behaviors 'zoh' (zero-order hold) or 
'foh' (first-order hold). If method is not specified, the InterSample behavior of 
the data from which md was estimated is used.

With the Control System Toolbox, methods 'tustin', 'prewarp', and 
'matched' are also supported. In these cases no translation of the covariance 
matrix takes place.

If the discrete-time model contains pure time delays, that is, , then these 
are first removed before the transformation is made. These delays are 
appended as pure time delay (dead time) to the continuous-time model as the 
property InputDelay. To have the time delay approximated by a 
finite-dimensional continuous system, enter among the input arguments 
(...,'InputDelay',0,...). 

If the noise variance is  in md, and its sampling interval is T, then the 
continuous-time model has an indicated level of noise spectral density equal to 
T .

While idpoly and idss models are returned in the same format, idarx models 
are returned as idss models mc. The reason is that the transformation does not 
preserve the special structure of idarx. The idgrey structures are preserved if 
their CDMfile property is equal to cd. Otherwise they are transformed to idss 
objects.

nk 1>

λ

λ
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Note  The transformation from discrete to continuous time is not unique. d2c 
selects the continuous-time counterpart with the slowest time constants 
consistent with the discrete-time model. The lack of uniqueness also means 
that the transformation can be ill-conditioned or even singular. In particular, 
poles on the negative real axis, in the origin, or in the point 1, are likely to 
cause problems. Interpret the results with care.

Examples Transform an identified model to continuous time and compare the frequency 
responses of the two models.

m = n4sid(data,3)
mc = d2c(m);
bode(m.mc,'sd',3)

Note that you can include the transformation to continuous time in the n4sid 
command by specifying the model to be continuous time.

mc = n4sid(data,3,'Ts',0)

References See “Discrete- and Continuous-Time Models” on page 3-68 and “Spectrum 
Normalization and the Sampling Interval” on page 3-107.

See Also c2d, nuderst
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4EstimationInfoPurpose Information about estimation process results

Syntax m.EstimationInfo
m.es
m.es.DataLength, etc

Description Any estimated model has the property EstimationInfo, which is a structure 
whose fields give information about the results of the estimation. Depending on 
whether it is an estimated parametric idmodel or an estimated frequency 
response idfrd, EstimationInfo will contain different fields.

idmodel Case
The model structure will contain the properties ParameterVector, 
CovarianceMatrix, and NoiseVariance, which are all calculated in the 
estimation process (see the reference page for idmodel). In addition, 
EstimationInfo contains the following fields:

• Status: Information whether the model has been estimated, or modified 
after being estimated.

• Method: Name of the estimation command that produced the model.

• LossFcn: Value of the identification criterion at the estimate. Normally equal 
to the determinant of the covariance matrix of the prediction errors, that is, 
the determinant of NoiseVariance. Note that the loss function for the 
minimization might be different due to LimitError. The value of the 
nonrobustified loss function is always stored in LossFcn.

• FPE: Akaike’s Final Prediction Error, defined as 
LossFcn *(1+d/N}/(1-d/N), where d is the number of estimated parameters 
and N is the length of the data record.

• DataName: Name of the data set from which the model was estimated. This is 
equal to the property name of the iddata object. If this was not defined, the 
name of the MATLAB iddata variable is used.

• DataLength: Length of the data record.

• DataTs: Sampling interval of the data.

• DataDomain: 'Time' or 'Frequency', depending on the data domain.

• DataInterSample: Intersample behavior of the data from which the model 
was estimated. This equals the property InterSample of the iddata object. 
(See iddata.)
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• WhyStop: For models that have been estimated by iterative search. The 
stopping rule that caused the iterations to terminate. Assumes values like 
'MaxIter reached', 'No improvement possible along the search 
vector', or 'Near (local) minimum'. The latter means that the expected 
improvement is less than Tolerance (see Algorithm Properties).

• UpdateNorm: Norm of the Gauss-Newton vector at the last iteration.

• LastImprovement: Relative improvement of the criterion value at the last 
iteration.

• Iterations: Number of iterations used in the search.

• InitialState: Option actually used when Model.InitialState = 'auto'.

• N4Weight: For n4sid estimates, or estimates that have been initialized by 
n4sid: the actual value of N4Weight used.

• N4Horizon: For n4sid estimates, or estimates that have been initialized by 
n4sid: the actual value of N4Horizon used. See n4sid and Algorithm 
Properties.

idfrd Case
If the idfrd model is obtained from an estimated parametric model,

g = idfrd(Model)

g.EstimationInfo is the same as Model.EstimationInfo as described above.

For an idfrd model that has been estimated from etfe, spa, or spafdr, 
EstimationInfo contains the following fields:

• Status: Whether the model is estimated or directly constructed.

• Method: etfe, spa, or spafdr

• WindowSize: Resolution parameter (or vector) used for the estimation

• DataName, DataLength, DataTs, DataDomain, DataInterSample: Properties of 
the estimation data as above.

See Also idfrd, idmodel
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4etfePurpose Estimate empirical transfer functions and periodograms

Syntax g = etfe(data)
g = etfe(data,M,N)

Description etfe estimates the transfer function g of the general linear model

data contains the output-input data and is an iddata object (time or frequency 
domain).

g is given as an idfrd object with the estimate of  at the frequencies

w = [1:N]/N∗pi/T

The default value of N is 128. 

In case data contains a time series (no input channels), g is returned as the 
periodogram of y.

When M is specified other than the default value M = [], a smoothing operation 
is performed on the raw spectral estimates. The effect of M is then similar to the 
effect of M in spa. This can be a useful alternative to spa for narrowband spectra 
and systems, which require large values of M. 

When etfe is applied to time series, the corresponding spectral estimate is 
normalized in the way that is defined in “Spectrum Normalization and the 
Sampling Interval” on page 3-107. Note that this normalization might differ 
from the one used by spectrum in the Signal Processing Toolbox.

If the (input) data is marked as periodic (data.Period = integer) and contains 
an even number of periods, the response is computed at the frequencies 
k*2*pi/period for k = 0 up to the Nyquist frequency.

Examples Compare an empirical transfer function estimate to a smoothed spectral 
estimate.

ge = etfe(z);
gs = spa(z);
bode(ge,gs)

y t( ) G q( )u t( ) v t( )+=

G eiω( )
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Generate a periodic input, simulate a system with it, and compare the 
frequency response of the estimated model with the true system at the excited 
frequency points.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);
me = etfe([y u])
bode(me,'b*',m)

Algorithm The empirical transfer function estimate is computed as the ratio of the output 
Fourier transform to the input Fourier transform, using fft. The periodogram 
is computed as the normalized absolute square of the Fourier transform of the 
time series.

You obtain the smoothed versions (M less than the length of z) by applying a 
Hamming window to the output fast Fourier transform (FFT) times the 
conjugate of the input FFT, and to the absolute square of the input FFT, 
respectively, and subsequently forming the ratio of the results. The length of 
this Hamming window is equal to the number of data points in z divided by M, 
plus one.

See Also spa, spafdr



fcat

4-65

4fcatPurpose Concatenate frequency-domain signals in idfrd and iddata objects

Syntax Mc = fcat(M1,M2,...Mn)

Description M1, M2, etc., are all idfrd objects or iddata frequency-domain objects.

Mc is the corresponding object obtained by concatenation of the responses at all 
the frequencies in Mk.

Note that for iddata objects, this is the same as vertical concatenation 
(vertcat).

Mc = [M1;M2;..;Mn].

See Also fselect, iddata, idfrd
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4feedbackPurpose Investigate feedback presence in iddata sets

Syntax [fbck,fbck0,nudir] = feedback(Data)

Description Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry is a 
measure of feedback from output ky to input ku. The value is a probability P in 
percent. Its interpretation is that if the hypothesis that there is no feedback 
from output ky to input ku were tested at the level P, it would have been 
rejected. An intuitive but technically incorrect way of thinking about this is to 
see P as “the probability of feedback.” Often only values above 90% are taken 
as indications of feedback. When fbck is calculated, direct dependence at lag 
zero between u(t) and y(t) is not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and y(t) is 
viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a direct 
effect on some outputs, that is, no delay from input to output.

See Also advice. idmodel/feedback
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4ffplotPurpose Plot frequency functions and spectra

Syntax ffplot(m)
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)
ffplot(m1,m2,m3,...,w)
ffplot(m1,'PlotStyle1',m2,'PlotStyle2',...)
ffplot(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)

Description This function has exactly the same syntax as bode. The only difference is that 
it gives graphs with linear frequency scales and Hz as the frequency unit.

See Also bode, nyquist
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4 fft/ifftPurpose Transform iddata objects between time and frequency domains

Syntax Datf = fft(Data),  dat = ifft(Datf)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

Description If Data is a time-domain iddata object with real-valued signals and with 
constant sampling interval Ts, Datf is returned as a frequency-domain iddata 
object with the frequency values equally distributed from frequency 0 to the 
Nyquist frequency. Whether the Nyquist frequency actually is included or not 
depends on the signal length (even or odd). Note that the FFTs are normalized 
by dividing each transform by the square root of the signal length. That is in 
order to preserve the signal power and noise level.

In the default case, the length of the transformation is determined by the signal 
length. A second argument N will force FFT transformations of length N, 
padding with zeros if the signals in Data are shorter and truncating otherwise. 
Thus the number of frequencies in the real signal case will be N/2 or (N+1)/2. 
If Data contains several experiments, N can be a row vector of corresponding 
length.

For real signals, the default is that Datf only contains nonnegative frequencies. 
For complex-valued signals, negative frequencies are also included. To enforce 
negative frequencies in the real case, add a last argument, 'Complex'.

ifft similarily transforms a frequency-domain iddata object to the time 
domain. It requires the frequencies on Datf to be equally spaced from 
frequency 0 to the Nyquist frequency. More exactly this means that if there are 
N frequencies in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and 
F = pi/Ts*(1-1/N) if N is even.

See Also iddata, iddata/complex, iddata/realdata
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4frdPurpose Convert idfrd objects to freqency-response-data LTI models of Control System 
Toolbox

Syntax sys = frd(mod)

Description mod is an idfrd object. sys is returned as an frd object.

The fields  Frequency, ResponseData, Units, Ts, InputDelay, InputName, 
OutputName and Notes in mod are transferred to sys. The remaing fields 
(SpectrumData, CovarianceData and NoiseCovariance) are ignored. The 
command therefore cannot be applied to a time-series idfrd model object.

See Also ss, tf, zpk
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4freqrespPurpose Compute frequency function for model

Syntax H = freqresp(m)
[H,w,covH] = freqresp(m,w)

Description m is any idmodel or idfrd object.

H = freqresp(m,w) computes the frequency response H of the idmodel model m 
at the frequencies specified by the vector w. These frequencies should be real 
and in rad/s. 

If m has ny outputs and nu inputs, and w contains Nw frequencies, the output H 
is an ny-by-nu-by-Nw array such that H(:,:,k) gives the complex-valued 
response at the frequency w(k).

For a SISO model, H(:) to obtain a vector of the frequency response. 

If w is not specified, a default choice is made based on the dynamics of the 
model.

Output Arguments
[H,w,covH] = freqresp(M,w) 

also returns the frequencies w and the covariance covH of the response. covH is 
a 5-D array where covH(ky,ku,k,:,:) is the 2-by-2 covariance matrix of the 
response from input ku to output ky at frequency w(k). The 1,1 element is the 
variance of the real part, the 2,2 element is the variance of the imaginary part, 
and the 1,2 and 2,1 elements are the covariance between the real and 
imaginary parts. squeeze(covH(ky,ku,k,:,:)) gives the covariance matrix of 
the corresponding response.

If m is a time series (no input channels), H is returned as the (power) spectrum 
of the outputs, an ny-by-ny-by-Nw array. Hence H(:,:,k) is the spectrum 
matrix at frequency w(k). The element H(k1,k2,k) is the cross spectrum 
between outputs k1 and k2 at frequency w(k). When k1 = k2, this is the 
real-valued power spectrum of output k1. 

covH is then the covariance of the estimated spectrum H, so that covH(k1,k1,k) 
is the variance of the power spectrum estimate of output k1 at frequency W(k). 
No information about the variance of the cross spectra is normally given; that 
is, covH(k1,k2,k) = 0 for k1 is not equal to k2.)
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If the model m is not a time series, use freqresp(m('n')) to obtain the 
spectrum information of the noise (output disturbance) signals.

Note that idfrd computes the same information as freqresp, and stores it in 
the idfrd object.

See Also bode, idfrd, nyquist
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4fpePurpose Akaike Final Prediction Error for estimated model

Syntax fp = fpe(Model1,Model2,Model3,...)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

fp is returned as a row vector containing the values of the Akaike Final 
Prediction Error (FPE) for the different models. This is defined as

 

where V is the loss function, d is the number of estimated parameters, and N 
is the number of estimation data.

Note that it is technically possible for FPE to become negative, if the number 
of estimated parameters exceeds the number of data (which could happen for 
models with many outputs). This is an artifact where the assumption behind 
the derivation that d/N is small is not valid. In such a case, it is better to use 
AIC.

References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo, aic

FPE V1 d N⁄+
1 d N⁄–
----------------------=
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4fselectPurpose Select frequencies from idfrd object

Syntax idfm = fselect(idf,index)
idfm = fselect(idf,Fmin,Fmax)

Description idf is any idfrd object. index is a row vector of frequency indices, so that idfm 
is the idfrd object that contains the response at frequencies 
idf.Frequency(Index).

If Fmin and Fmax are specified, idfm contains responses at frequencies between 
Fmin and Fmax.

Note that the operation is the same as dat(index) for an iddata object.

Examples Select every fifth frequency:

idfm = fselect(idf,5:5:100)

Select the response in the third quadrant:

ph = angle(squeeze(idf.response));
idfm = fselect(idf,find(ph>-pi & ph <-pi/2))

See Also fcat
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4getPurpose Query idmodel, idfrd, and iddata properties

Syntax Value = get(m,'PropertyName')
get(m)
Struct = get(m)

Description value = get(m,'PropertyName') returns the current value of the property 
PropertyName of the iddata set or idfrd, or idmodel (idgrey, idarx, idpoly, 
idss) m. The string 'PropertyName' can be the full property name (for example, 
'SSParameterization') or any unambiguous case-insensitive abbreviation 
(for example, 'ss'). You can specify any generic idmodel property or any 
property specific to idgrey, idarx, etc. (see iddata, idmodel, idgrey, idarx, 
idpoly, idss, and Algorithm Properties for lists of properties that can be 
accessed directly).

Struct = get(m) converts the object m into a standard MATLAB structure with 
the property names as field names and the property values as field values.

Without a left-hand argument

get(m)

displays all properties of m and their values.

Remarks An alternative to the syntax

Value = get(m,'PropertyName')

is the structure-like referencing

Value = m.PropertyName

See Also arxdata, iddata, idfrd, idmodel, polydata, set, ssdata, tfdata, zpkdata, 
Algorithm Properties, EstimationInfo
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4getexpPurpose Retrieve experiment(s) from multiple-experiment iddata objects

Syntax d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description data is an iddata object that contains several experiments. d1 is another 
iddata object containing the indicated experiment(s). The reference can either 
be by ExperimentNumber, as in d1 = getexp(data,3) or 
d1 = getexp(data,[4 2]); or by ExperimentName, as in 
d1 = getexp(data,'Period1') or 
d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment data 
objects.

You can also retrieve the experiments using a fourth subscript, as in 
d1 = data(:,:,:,ExperimentNumber). Type help iddata/subsref for details 
on this.
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4idarxPurpose Construct idarx model from ARX polynomials

Syntax m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

Description idarx creates an object containing parameters that describe the general 
multiinput, multioutput model structure of ARX type.

Here  and  are matrices of dimensions ny-by-ny and ny-by-nu, 
respectively. (ny is the number of outputs, that is, the dimension of the vector 

, and nu is the number of inputs.) See “Multivariable ARX Models: the 
idarx Model” on page 3-43.

The arguments A and B are 3-D arrays that contain the A matrices and the B 
matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in the model 
are defined by setting the corresponding leading entries in B to zero. For a 
multivariate time series take B = [].

The optional property NoiseVariance sets the covariance matrix of the driving 
noise source  in the model above. The default value is the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time models 
(Ts = 0) are not supported.

The use of idarx is twofold. You can use it to create models that are simulated 
(using sim) or analyzed (using bode, pzmap, etc.). You can also use it to define 
initial value models that are further adjusted to data (using arx). The free 
parameters in the structure are consistent with the structure of A and B; that 

y t( ) A1y t 1–( ) A2y t 2–( ) … Anay t na–( )+ + + + =

B0u t( ) B1u t 1–( ) … Bnbu t nb–( ) e t( )+ + + +

Ak Bk

y t( )

e t( )
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is, leading zeros in the rows of B are regarded as fixed delays, and trailing zeros 
in A and B are regarded as a definition of lower-order polynomials. These zeros 
are fixed, while all other parameters are free. 

For a model with one output, ARX models can be described both as idarx and 
idpoly models. The internal representation is different, however.

idarx 
Properties

• A, B: The A and B polynomials as 3-D arrays, described above

• dA, dB: The standard deviations of A and B. Same format as A and B. Cannot 
be set.

• na, nb, nk: The orders and delays of the model. na is an ny-by-ny matrix whose 
i-j entry is the order of the polynomial corresponding to the i-j entry of A. 
Similarly nb is an ny-by-nu matrix with the orders of B. nk is also an ny-by-nu 
matrix, whose i-j entry is the delay from input j to output i, that is, the 
number of leading zeros in the i-j entry of B.

• InitialState: This describes how the initial state (initial values in filtering, 
etc.) should be handled. For time-domain applications, this is typically 
handled by starting the filtering when all data are available. For 
frequency-domain data, though, this requires more attention. See “Initial 
States for Frequency Domain Data” on page 3-101. The possible values of 
InitialState are 'zero', 'estimate', and 'auto' (which makes a 
data-dependent choice between zero and estimate).

In addition to these properties, idarx objects also have all the properties of the 
idmodel object. See idmodel, Algorithm Properties, and EstimationInfo. 

Note that you can set and retrieve all properties either with the set and get 
commands or by subscripts. Autofill applies to all properties and values, and 
they are case insensitive.

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops idarx.
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Examples Simulate a second-order ARX model with one input and two outputs, and then 
estimate a model using the simulated data.

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also arx, arxdata, idmodel, idpoly
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4iddataPurpose Package input-output data into iddata object

Syntax data = iddata(y,u)
data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)
data = iddata(y,u,'Frequency',W)
data = iddata(idfrd_object)

Description iddata is the basic object for dealing with signals in the toolbox. It is used by 
most of the commands. It can handle both time- and frequency-domain data. 
Most estimation and simulation commands can be applied to iddata objects in 
a transparent manner, regardless of the signal domain.

Basic Use
Let y be a column vector or an N-by-ny matrix. The columns of y correspond to 
the different output channels. Similarly, u is a column vector or an N-by-nu 
matrix containing the signals of the input channels. For time-domain signals,

data = iddata(y,u,Ts)

creates an iddata object containing these output and input channels. Ts is the 
sampling interval. This construction is sufficient for most purposes. For 
frequency-domain data, the vector of frequencies W (length N) at which the 
signals are defined must be supplied.

data = iddata(y,u,'Frequency',W)

The data is then plotted by plot(data) (see plot), and portions of the data 
record are selected, as in ze = data(1:300) or zv = data(501:700).

An idfrd object can be transformed to a frequency-domain iddata object by

data = iddata(idfrd_object)

See “Transformations” on page 4-85.

The signals in the output channels are retrieved by data.OutputData, or for 
short, data.y. Similarly the input signals are obtained by data.InputData or 
data.u.

For a time series (no input channels), use data = iddata(y), or let u = [].

An iddata object can also contain just an input, if you let y = [].
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The sampling interval can be changed by set(data,'Ts',0.3) or, more 
simply, by data.Ts = 0.3.

The input and output channels are given default names like 'y1', 'y2', 
'u1','u2', etc. You can set the channel names by

set(data,'InputName',{'Voltage','Current'},'OutputName','Tempera
ture')

(two inputs and one output in this example), and these names will then follow 
the object and appear in all plots. The names are also inherited by models that 
are estimated from the data.

Similarly, you can specify channel units using the properties 'OutputUnit' 
and 'InputUnit'. These units, when specified, are used in plots.

The time points associated with the time-domain data samples are determined 
by the sampling interval Ts and the time of the first sample, Tstart.

data.Tstart = 24

The actual time point values are given by the property 'SamplingInstants' as 
in

plot(data.sa,data.u)

for a plot of the input with correct time points. Autofill is used for all properties, 
and they are case insensitive. For frequency-domain data, the property 
'Frequency' picks out the frequency values.

plot(data.fre,abs(data.u))

Manipulating Channels
An easy way to set and retrieve channel properties is to use subscripting. The 
subscripts are defined as 

data(Samples,Outputs,Inputs)

so dat(:,3,:) is the data object obtained from dat by keeping all input 
channels, but only output channel 3. (Trailing “:”s can be omitted, so 
dat(:,3,:) = dat(:,3).)

The channels can also be retrieved by their names, so that 

 dat(:,{'speed','flow'},[]) 
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is the data object where the indicated output channels have been selected and 
no input channels are selected.

Moreover,

dat1(101:200,[3 4],[1 3]) = dat2(1001:1100,[1 2],[6 7])

will change samples 101 to 200 of output channels 3 and 4 and input channels 
1 and 3 in the iddata object dat1 to the indicated values from iddata object 
dat2. The names and units of these channels are also changed accordingly.

To add new channels, use horizontal concatenation of iddata objects. 

dat =[dat1, dat2];

(see “Horizontal Concatenation” on page 4-85) or add the data record directly. 
Thus

dat.u(:,5) = U 

adds a fifth input to dat.

Nonequal Sampling for Time-Domain Data
The property 'SamplingInstants' gives the sampling instants of the data 
points. It can always be retrieved by get(dat,'SamplingInstants') (or dat.s) 
and is then computed from dat.Ts and dat.Tstart. 'SamplingInstants' can 
also be set to an arbitrary vector of the same length as the data, so that 
nonequal sampling can be handled. Ts is then automatically set to []. Most of 
the estimation routines, though, do not handle unequally sampled data.

Multiple Experiments
The iddata object can also store data from separate experiments. The property 
'ExperimentName' is used to separate the experiments. The number of data as 
well as the sampling properties can vary from experiment to experiment, but 
the input and output channels must be the same. (Use NaN to fill possibly 
unmeasured channels in certain experiments.) The data records will be cell 
arrays, where the cells contain data from each experiment.

You can define multiple experiments directly by letting the 'y' and 'u' 
properties, as well as 'Ts' and 'Tstart', be cell arrays. (For frequency-domain 
data, the frequency vector will be a cell array.)
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It is normally easier to create multiple-experiment data by merging 
experiments, as in

dat = merge(dat1,dat2) 

See the reference page for merge (data). Storing multiple experiments as one 
iddata object can be very useful to handle experimental data that has been 
collected on different occasions, or when a data set has been split up to remove 
“bad” portions of the data. All the toolbox’s routines accept 
multiple-experiment data.

Experiments can be retrieved by the command getexp. They can also be 
retrieved by subscripting with a fourth index: dat(:,:,:,3) is experiment #3, 
and dat(:,:,:,{'Day1','Day4'}) retrieves the two experiments with the 
indicated names.

The subscripting can be combined: dat(1:100,[2,3],[4:8],3) gives the 100 
first samples of output channels 2 and 3 and input channels 4 to 8 of 
experiment #3. It can also be used for subassignment:

dat(:,:,:,'Run4') = dat2 

which adds the data in dat2 as a new experiment with name 'Run4'. See 
iddemo #8 for an illustration of how multiple experiments can be used.

iddata 
Properties

In the list below, N denotes the number of samples of the signals, ny the number 
of output channels, nu the number of input channels, and Ne the number of 
experiments.

• Domain: Assumes the value 'Time' or 'Frequency' and denotes whether the 
data are time-domain or frequency-domain data.

• Name: An optional name for the data set. An arbitrary string.

• OutputData, InputData: The data matrices y and u. In the single-experiment 
case, y is an N-by-ny matrix and u is an N-by-nu matrix. For multiple 
experiments, y and u are 1-by-Ne cell arrays, with each cell containing the 
data for the different experiments.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1 containing 
the names of the output and input channels. If not specified, default names 
{'y1';'y2';...} and {'u1';'u2';...} are given.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1 containing 
the units of the output and input channels.
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• TimeUnit: The unit for the sampling instants.

• Ts: Sampling interval. A scalar. For multiple-experiment data, Ts is a 
1-by-Ne cell array, with each cell containing the sampling interval of the 
corresponding experiment. For nonequally sampled data, Ts = []. For 
time-domain signals, Ts has to be positive. For frequency-domain data, 
Ts = 0 indicates continuous-time data; that is, the inputs and outputs are 
interpreted as continuous-time Fourier transforms of the signals, given at 
the frequencies in the frequency vector. Note that Ts is essential also for 
frequency-domain data, for proper interpretation of how the Fourier 
transforms were computed: They are interpreted as discrete-time Fourier 
transforms (DTFT) with the indicated sampling interval.

• Tstart: (For time-domain data only.) The starting time of the data record. A 
scalar. For multiple-experiment data, Tstart is a 1-by-Ne cell array, with 
each cell containing the starting time for the corresponding experiment.

• SamplingInstants: (For time-domain data only.) The time values of the 
sample points. An N-by-1 vector. For multiple-experiment data, 
SamplingInstants is a 1-by-Ne cell array, with each cell containing the 
sampling instants of the corresponding experiment. For equally sampled 
data, SamplingInstants is generated from Ts and Tstart.

• Frequency: (For frequency-domain data only.) The vector of frequencies at 
which the signals’ transforms are defined. This is a column vector the length 
of the number of values of OutputData and InputData. For 
multiple-experiment data, Frequency is a cell array containing the 
frequencies for each experiment.

• Units: (For frequency-domain data only). The unit in which the frequencies 
are measured: rad/s or Hz. For multiple-experiment data, units is a cell 
array denoting the unit for each experiment.

• Period: The period of the input. A nu-by-1 vector, where the kth entry 
contains the period of the kth input. Period = inf means nonperiodic data. 
For multiple-experiment data, Period is a 1-by-Ne cell array with each cell 
containing the period(s) for the input of the corresponding experiment.

• InterSample: Describes the intersample behavior of the input channels. An 
nu-by-1 cell array where the (k,1) element is 'zoh', 'foh', or 'bl', denoting 
that input number k is piecewise constant, piecewise linear, or band limited. 
For multiple-experiment data, InterSample is an nu-by-Ne cell array.

• ExperimentName: A string containing the name of the experiment. For 
multiple-experiment data, ExperimentName is a 1-by-Ne cell array with each 
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cell containing the name of the corresponding experiment. It can be freely 
set, and is given names {'Exp1', 'Exp2',...} by default.

• Notes: An arbitrary field to store extra information and notes about the 
object.

• UserData: An arbitrary field for any possible use.

Note that you can set or retrieve all properties either with the set and get 
commands or by subscripts. Autofill applies to all properties and values, and 
they are case insensitive. 'y' and 'u' can be used as short for 'OutputData' 
and 'InputData'. 'y' and 'u' can also replace 'Output' and 'Input' in the 
other properties.

data.y=randn(100,2)
data.una = 'Voltage'
set(data,'tim','minute')
p = data.per

For a complete list of property values, use get(data). To see possible value 
assignments, use set(data).

Subreferencing The samples, outputs and input channels can be referenced according to

data(samples,outputs,inputs)

Use a colon (:) to denote all samples/channels and the empty matrix ([]) to 
denote no samples/channels. For frequency-domain data, samples corresponds 
to the frequency vector indices, so that

dat2 = datf([5:30])

picks out the data values at frequencies W(5:30), where W = datf.Frequency.

The channels can be referenced by number or by name. For several names, you 
must use a cell array.

dat2 = dat(:,'y3',{'u1','u4'})
dat2 = dat(:,3,[1 4])

Logical expressions will also work.

dat3 = dat2(dat2.sa>1.27&dat2.sa<9.3)

will select the samples with time marks between 1.27 and 9.3.
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Subreferencing with a fourth argument refers to the experiment.

data(samples,outputs,inputs,Experiment)

Any subreferenced variable can also be assigned.

data(:,:,:,'Exp3'.y = flow(1:700,:)

data(1:10,1,1) = dat1(101:110,2,3)

Horizontal 
Concatenation

dat = [dat1,dat2,...,datN]creates an iddata object dat, consisting of the 
input and output channels in dat1,... datN. Default channel names ('u1', 
'u2', 'y1', 'y2', etc.) are changed so that overlaps in names are avoided, and 
the new channels are added.

If datk contains channels with user-specified names that are already present 
in the channels of Datj, j<k, these new channels are ignored.

Vertical 
Concatenation

dat = [dat1;dat2;... ;datN] creates an iddata object dat whose signals are 
obtained by stacking those of datk on top of each other. That is,

dat.OutputData = [dat1.Ouputdata;dat2.OutputData; ... 
datN.OutputData]

and similarly for the inputs. The datk objects must all have the same number 
of channels and experiments.

Transforma-
tions 

The command fft transforms a time-domain data set to frequency domain. 
The command ifft transforms a frequency-domain data set (with certain 
requirements on the frequency vector) to time domain.

An idfrd (frequency-response data) object can be transformed to a 
frequency-domain iddata object by

datf = iddata(idfrdobj)

The command

datf = iddata(idfrdobj,'me')

transforms the idfrd object to a multiple-experiment data set datf where each 
experiment corresponds to each of the inputs in idfrdobj. By default this 
transformation strips away frequencies where the response is inf or NaN. To 
keep these, use datf = iddata(idfrdobj,'inf'). Type help idfrd/iddata.
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Dealing with 
Complex-
Valued Data

If Dat is complex valued, abs(Dat), real(Dat), imag(Dat), phase(Dat), 
angle(Dat), and (Dat) create iddata objects where each of the signals has 
been subjected to the indicated operation.

isreal(Dat) returns 1 if Dat contains only real signals, while realdata(Dat) 
returns 1 if the underlying signal is real. Thus a frequency-domain signal Datf 
obtained by fft from a real-valued time-domain signal will have 

isreal(Datf) = 0 and realdata(Datf) = 1

For a realdata frequency-domain set (which only stores the values for 
nonnegative frequencies), the command

datc = complex(dat)

adds signal values for negative frequencies (by complex conjugation).

Online Help 
Functions

See help iddata, idprops iddata, help iddata/subsref, help 
iddata/subsasgn, help iddata/horzcat, and help iddata/vertcat.

See Also plot (iddata), size, fft, ifft, detrend, idfilt
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4identPurpose Open System Identification Toolbox GUI

Syntax ident
ident(session,directory)

Description ident by itself opens the main interface window, or brings it forward if it is 
already open.

session is the name of a previous session with the graphical user interface, 
and typically has extension.sid. The directory argument is the complete path 
for the location of this file. If the session file is on the MATLABPATH, directory 
can be omitted.

When the session is specified, the interface will open with this session active. 
Typing ident(session,directory) on the MATLAB command line, when the 
interface is active, will load and open the session in question.

For more information about the graphical user interface, see Chapter 2, “The 
Graphical User Interface.” 

Examples ident('iddata1.sid')
ident('mydata.sid','\matlab\data\cdplayer\')

See Also midprefs
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4idfiltPurpose Filter data using user-defined passbands, general filters, or Butterworth filters

Syntax Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description Z is the data, defined as an iddata object. Zf contains the filtered data as an 
iddata object. The filter can be defined in three ways:

• As an explicit system that defines the filter,

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO idmodel or LTI model object. Alternatively the filter can 
be defined as a cell array {A,B,C,D} of SISO state-space matrices or as a cell 
array {num,den} of numerator/denominator filter coefficients.

• As a vector or matrix that defines one or several passbands,

filter=[[wp1l,wp1h];[ wp2l,wp2h]; ....;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A filter is 
constructed that gives the union of these passbands. For time-domain data, 
it is computed as cascaded Butterworth filters or order NF. The default value 
of NF is 5. 

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

• For frequency-domain data, only the frequency response of the filter can be 
specified:

filter = Wf

Here Wf is a vector of possibly complex values that define the filter’s 
frequency response, so that the inputs and outputs at frequency 
Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector of 
length = number of frequencies in Z. If the data object has several 
experiments, Wf is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain as causal 
filtering as default. This corresponds to a last argument causality = 
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'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is 
used for the filtering (corresponding to filtfilt in the Signal Processing 
Toolbox).

For frequency-domain data, the signals are multiplied by the frequency 
response of the filter. With the filters defined as passband, this gives ideal, 
zero-phase filtering (“brickwall filters”). Frequencies that have been assigned 
zero weight by the filter (outside the passband, or via the frequency response) 
are removed from the iddata object Zf.

It is common practice in identification to select a frequency band where the fit 
between model and data is concentrated. Often this corresponds to bandpass 
filtering with a passband over the interesting breakpoints in a Bode diagram. 
For identification where a disturbance model is also estimated, it is better to 
achieve the desired estimation result by using the property 'Focus' (see 
Algorithm Properties) than just to prefilter the data. The proper values for 
'Focus' are the same as the argument filter in idfilt.

Algorithm The Butterworth filter is the same as butter in the Signal Processing Toolbox. 
Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

References Ljung (1999), Chapter 14.

See Also Algorithm Properties, idresamp, detrend
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4idfrdPurpose Construct idfrd object from idmodel object or functions

Syntax h = idfrd(Response,Freqs,Ts)
h = idfrd(Response,Freqs,Ts,'CovarianceData',Covariance, ... 

'SpectrumData',Spec,'NoiseCovariance',Speccov,'property1', ... 
Value1,'PropertyN',ValueN)

h = idfrd(mod)
h = idfrd(mod,Freqs)

Description idfrd creates the idfrd model object. 

For a model

stores the transfer function estimate G (see (Equation 3-4) in Chapter 3, 
“Tutorial,”)

as well as the spectrum of the additive noise ( ) at the output

where  is the estimated variance of e(t), and T is the sampling interval.

Creating idfrd from Given Responses
Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being the number 
of outputs, nu the number of inputs, and Nf the number of frequencies (that is, 
the length of Freqs). Response(ky,ku,kf) is thus the complex-valued 
frequency response from input ku to output ky at frequency =Freqs(kf). 
When defining the response of a SISO system, Response can be given as a 
vector.

Freqs is a column vector of length Nf containing the frequencies of the 
response.

Ts is the sampling interval. T = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency response. 
It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is such that 

y t( ) G q( )u t( ) H q( )e t( )+=

G eiω( )

Φv

Φv ω( ) λT H eiωT( )
2

=

λ

ω
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Covariance(ky,ku,kf,:,:) is the 2-by-2 covariance matrix of the response 
Response(ky,ku,kf). The 1-1 element is the variance of the real part, the 2-2 
element is the variance of the imaginary part, and the 1-2 and 2-1 elements are 
the covariance between the real and imaginary parts. 
squeeze(Covariance(ky,ku,kf,:,:)) thus gives the covariance matrix of the 
corresponding response.

The information about spectrum is optional. The format is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that spec(ky1,ky2,kf) 
is the cross spectrum between the noise at output ky1 and the noise at output 
ky2, at frequency Freqs(kf). When ky1 = ky2 the (power) spectrum of the 
noise at output ky1 is thus obtained. For a single-output model, spec can be 
given as a vector.

speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that 
speccov(ky1,ky1,kf) is the variance of the corresponding power spectrum. 
Normally, no information is included about the covariance of the nondiagonal 
spectrum elements.

If only SpectrumData is to be packaged in the idfrd object, set Response = [].

Creating idfrd from a Given Model
idfrd can also be computed from a given model mod (defined as any idmodel 
object).

If the frequencies Freqs are not specified, a default choice is made based on the 
dynamics of the model mod. 

If mod has InputDelay different from zero, these are appended as phase lags, 
and h will then have an InputDelay of 0.

The estimated covariances are computed using the Gauss approximation 
formula from the uncertainty information in mod. For models with complicated 
parameter dependencies, numerical differentiation is applied. The step sizes 
for the numerical derivatives are determined by nuderst. 

Frequency responses for submodels can be obtained by the standard 
subreferencing, h = idfrd(m(2,3)). See idmodel. In particular, 
h = idfrf(m('measured')) gives an h that just contains the ResponseData 
(G) and no spectra. Also h = idfrd(m('noise')) gives an h that just contains 
SpectrumData.
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The idfrd models can be graphed with bode, ffplot, and nyquist, which all 
accept mixtures of idmodel and idfrd models as arguments. Note that spa, 
spafdr, and etfe return their estimation results as idfrd objects.

idfrd 
Properties

• ResponseData: 3-D array of the complex-valued frequency response as 
described above. For SISO systems use Response(1,1,:) to obtain a vector 
of the response data.

• Frequency: Column vector containing the frequencies aT which the 
responses are defined.

• CovarianceData: 5-D array of the covariance matrices of the response data 
as described above.

• SpectrumData: 3-D array containing power spectra and cross spectra of the 
output disturbances (noise) of the system.

• NoiseCovariance: 3-D array containing the variances of the power spectra, 
as explained above.

• Units: Unit of the frequency vector. Can assume the values 'rad/s' and 
'Hz'.

• Ts: Scalar denoting the sampling interval of the model whose frequency 
response is stored. 'Ts' = 0 means a continuous-time model.

• Name: An optional name for the object.

• InputName: String or cell array containing the names of the input channels. 
It has as many entries as there are input channels.

• OutputName: Correspondingly for the output channels.

• InputUnit: Units in which the input channels are measured. It has the same 
format as 'InputName'.

• OutputUnit: Correspondingly for the output channels.

• InputDelay: Row vector of length equal to the number of input channels. 
Contains the delays from the input channels. These should thus be appended 
as phase lags when the response is calculated. This is done automatically by 
freqresp, bode, ffplot, and nyquist. Note that if the idfrd is calculated 
from an idmodel, possible input delays in that model are converted to phase 
lags, and the InputDelay of the idfrd model is set to zero.

• Notes: An arbitrary field to store extra information and notes about the 
object.

• UserData: An arbitrary field for any possible use.
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• EstimationInfo: Structure that contains information about the estimation 
process that is behind the frequency data. It contains the following fields (see 
also the reference page for EstimationInfo).

- Status: Gives the status of the model, for example, 'Not estimated'.

- Method: The identification routine that created the model.

- WindowSize: If the model was estimated by spa, spafdr, or etfe, the size 
of window (input argument M, the resolution parameter) that was used. 
This is scalar or a vector.

- DataName: Name of the data set from which the model was estimated.

- DataLength: Length of this data set.

Note that you can set or retrieve all properties either with the set and get 
commands or by subscripts. Autofill applies to all properties and values, and 
these are case insensitive:

h.ts = 0
loglog(h.fre,squeeze(h.spe(2,2,:)))

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops idfrd.

Subreferencing The different channels of the idfrd are retrieved by subreferencing.

h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output channel 
2, and, if applicable, the output spectrum data for output channel 2. The 
channels can also be referred to by their names, as in 
h('power',{'voltage',''speed'}).

h('m') 

contains the information for measured inputs only, that is, just ResponseData, 
while

h('n')

('n' for 'noise') just contains SpectrumData.

Horizontal 
Concatenation

Adding input channels,

h = [h1,h2,...,hN]
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creates an idfrd model h, with ResponseData containing all the input channels 
in h1,...,hN. The output channels of hk must be the same, as well as the 
frequency vectors. SpectrumData is ignored. 

Vertical 
Concatenation

Adding output channels,

h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output 
channels in h1, h2,...,hN. The input channels of hk must all be the same, as 
well as the frequency vectors. SpectrumData is also appended for the new 
outputs. The cross spectrum between output channels is then set to zero.

Converting to 
iddata

You can convert an idfrd object to a frequency-domain iddata object by

Data = iddata(Idfrdmodel)

See iddata.

Examples Compare the results from spectral analysis and an ARMAX model.

m = armax(z,[2 2 2 1]);
g = spa(z)
g = spafdr(z,[],{0,10})
bode(g,m)

Compute separate idfrd models, one containing the frequency function and 
the other the noise spectrum.

g = idfrd(m('m'))
phi = idfrd(m('n'))

See Also bode, etfe, freqresp, nyquist, spa
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4idgreyPurpose Construct grey-box linear model using user-defined M-file

Syntax m = idgrey(MfileName,ParameterVector,CDmfile)
m = idgrey(MfileName,ParameterVector,CDmfile,FileArgument,Ts,...
'Property1',Value1,...,'PropertyN',ValueN)

Description The function idgrey is used to create arbitrarily parameterized state-space 
models as idgrey objects.

MfileName is the name of an M-file that defines how the state-space matrices 
depend on the parameters to be estimated. The format of this M-file is given by

[A,B,C,D,K,X0] = mymfile(pars,Tsm,Auxarg)

and is further discussed below. 

ParameterVector is a column vector of the nominal/initial parameters. Its 
length must be equal to the number of free parameters in the model (that is, 
the argument pars in the example below).

The argument CDmfile describes how the user-written M-file handles 
continuous and discrete-time models. It takes the following values:

• CDmfile = 'cd': The M-file returns the continuous-time state-space 
matrices when called with the argument Tsm = 0. When called with a value 
Tsm > 0, the M-file returns the discrete-time state-space matrices, obtained 
by sampling the continuous-time system with sampling interval Tsm. The 
M-file must consequently in this case include the sampling procedure.

• CDmfile = 'c'. The M-file always returns the continuous-time state-space 
matrices, no matter the value of Tsm. In this case the toolbox’s estimation 
routines will provide the sampling when you are fitting the model to 
discrete-time data.

• CDmfile='d'. The M-file always returns discrete-time state-space matrices 
that may or may not depend on Tsm.

The argument FileArgument corresponds to the auxiliary argument Auxarg in 
the user-written M-file. It can be used to handle several variants of the model 
structure, without your having to edit the M-file. If it is not used, enter 
FileArgument = []. (Default.)
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Ts denotes the sampling interval of the model. Its default value is Ts = 0, that 
is, a continuous-time model. 

The idgrey object is a child of idmodel. Therefore any idmodel properties can 
be set as property name/property value pairs in the idgrey command. They can 
also be set by the command set, or by subassignment, as in

m.InputName = {'speed','voltage'}
m.FileArgument = 0.23

There are also two properties, DisturbanceModel and InitialState, that can 
be used to affect the parameterizations of K and X0, thus overriding the 
outputs from the M-file.

idgrey 
Properties

• MfileName: Name of the user-written M-file. 

• CDmfile: How this file handles continuous and discrete-time models 
depending on its second argument, T.

- CDmfile = 'cd' means that the M-file returns the continuous-time 
state-space model matrices when the argument T = 0, and the 
discrete-time model, obtained by sampling with sampling interval T, when 
T > 0. 

- CDmfile= 'c' means that the M-file always returns continuous-time 
model matrices, no matter the value of T.

- CDmfile = 'd' means that the M-file always returns discrete-time model 
matrices that may or may not depend on the value of T. 

• FileArgument: Possible extra input arguments to the user-written M-file.

• DisturbanceModel: Affects the parameterization of the K matrix. It can 
assume the following values:

- 'Model': This is the default. It means that the K matrix obtained from the 
user-written M-file is used.

- 'Estimate': The K matrix is treated as unknown and all its elements are 
estimated as free parameters. 

- 'Fixed': The K matrix is fixed to a given value.

- 'None': The K matrix is fixed to zero, thus producing an output-error 
model.

Note that in the three last cases the output K from the user-written M-file is 
ignored. The estimated/fixed value is stored internally and does not change 
when the model is sampled, resampled, or converted to continuous time. 
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Note also that this estimated value is tailored only to the sampling interval 
of the data.

• InitialState: Affects the parameterization of the X0 vector. It can assume 
the following values:

- 'Model': This is the default. It means that the X0 vector is obtained from 
the user-written M-file.

- 'Estimate': The X0 matrix is treated as unknown and all its elements are 
estimated as free parameters.

- 'Fixed': The X0 vector is fixed to a given value.

- 'Backcast': The X0 vector is estimated using a backcast operation 
analogous to the idss case.

- 'Auto': Makes a data-dependent choice among 'Estimate', 'Backcast', 
and 'Model'.

• A, B, C, D, K, and X0: The state-space matrices. For idgrey models, only 'K' 
and 'X0' can be set; the others can only be retrieved. The set 'K' and 'X0' 
are relevant only when DisturbanceModel/InitialState are Estimate or 
Fixed.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the 
state-space matrices. These cannot be set, only retrieved.

In addition, any idgrey object also has all the properties of idmodel. See 
Algorithm Properties and the reference page for idmodel.

Note that you can set or retrieve all properties using either the set and get 
commands or subscripts. Autofill applies to all properties and values, and they 
are case insensitive.

m.fi = 10;
set(m,'search','gn')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops and idgrey.
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M-File Details The model structure corresponds to the general linear state-space structure

Here  is the time derivative  for a continuous-time model and  
for a discrete-time model.

The matrices in this time-discrete model can be parameterized in an arbitrary 
way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,Auxarg) 

Here the vector pars contains the parameters , and the output arguments A, 
B, C, D, K, and x0 are the matrices in the model description that correspond to 
this value of the parameters and this value of the sampling interval T.

T is the sampling interval, and Auxarg is any variable of auxiliary quantities 
with which you want to work. (In that way you can change certain constants 
and other aspects in the model structure without having to edit the M-file.) 
Note that the two arguments T and Auxarg must be included in the function 
head of the M-file, even if they are not used within the M-file. 

“State-Space Models with Coupled Parameters: the idgrey Model” on page 3-51 
contains several examples of typical M-files that define model structures.

A comment about CDmfile: If a continuous-time model is sought, it is easiest to 
let the M-file deliver just the continuous-time model, that is, have 
CDmfile = 'c' and rely upon the toolbox’s routines for the proper sampling. 
Similarly, if the underlying parameterization is indeed discrete time, it is 
natural to deliver the discrete-time model matrices and let CDmfile = 'd'. If 
the underlying parameterization is continuous, but you prefer for some reason 
to do your own sampling inside the M-file in accordance with the value of T, 
then let your M-file deliver the continuous-time model when called with T = 0, 
that is, the alternative CMmfile = 'cd'. This avoids sampling and then 
transforming back (using d2c) to find the continuous-time model.

Examples Use the M-file mynoise given in “Parameterized Disturbance Models” on 
page 3-53 to obtain a physical parameterization of the Kalman gain.

x̃ t( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

x 0( ) x0 θ( )=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=

x̃ t( ) x· t( ) x t Ts+( )

θ

θ
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mn = idgrey('mynoise',[0.1,-2,1,3,0.2]','d')
m = pem(z,mn)
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4idinputPurpose Generate identification input signals 

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

Description idinput generates input signals of different kinds, which are typically used for 
identification purposes. u is returned as a matrix or column vector.

For further use in the toolbox, we recommend that you create an iddata object 
from u, indicating sampling time, input names, periodicity, and so on: 

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a column 
vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length M*P and 
periodic with period P.

Default is nu = 1 and M = 1.

type defines the type of input signal to be generated. This argument takes one 
of the following values:

• type = 'rgs': Gives a random, Gaussian signal.

• type = 'rbs': Gives a random, binary signal. This is the default.

• type = 'prbs': Gives a pseudorandom, binary signal.

• type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument band. For 
the choices type = 'rs', 'rbs', and 'sine', this argument is a row vector with 
two entries

band = [wlow, whigh]

that determine the lower and upper bound of the passband. The frequencies 
wlow and whigh are expressed in fractions of the Nyquist frequency. A white 
noise character input is thus obtained for band = [0 1], which is also the 
default value. 
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For the choice type = 'prbs', 

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B (the 
clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu for the 
choices type = 'rbs', 'prbs', and 'sine'. For type = 'rgs', the signal level 
is such that minu is the mean value of the signal, minus one standard deviation, 
while maxu is the mean value plus one standard deviation. Gaussian white 
noise with zero mean and variance one is thus obtained for levels = [-1, 1], 
which is also the default value.

Some PRBS Aspects
If more than one period is demanded (that is, M > 1), the length of the data 
sequence and the period of the PRBS signal are adjusted so that an integer 
number of maximum length PRBS periods is always obtained. If M = 1, the 
period of the PRBS signal is chosen to that it is longer than P = N. In the 
multiinput case, the signals are maximally shifted. This means P/nu is an 
upper bound for the model orders that can be estimated with such a signal.

Some Sine Aspects
In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P intersected with pi*[band(1) 
band(2)]

(for Grid_Skip, see below.) For multiinput signals, the different inputs use 
different frequencies from this grid. An integer number of full periods is always 
delivered. The selected frequencies are obtained as the second output 
argument, freqs, where row ku of freqs contains the frequencies of input 
number ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]
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meaning that No_of_Sinusoids is equally spread over the indicated band. 
No_of_Trials (different, random, relative phases) are tried until the lowest 
amplitude signal is found. 

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency multiples, for 
example, to detect nonlinearities of various kinds.

Algorithm Very simple algorithms are used. The frequency contents are achieved for 
'rgs' by an eighth-order Butterworth, noncausal filter, using idfilt. This is 
quite reliable. The same filter is used for the 'rbs' case, before making the 
signal binary. This means that the frequency contents are not guaranteed to be 
precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread over the 
chosen grid, and each sinusoid is given a random phase. A number of trials are 
made, and the phases that give the smallest signal amplitude are selected. The 
amplitude is then scaled so as to satisfy the specifications of levels.

References See Söderström and Stoica (1989), Chapter C5.3. For a general discussion of 
input signals, see Ljung (1999), Section 13.3.

Examples Create an input consisting of five sinusoids spread over the whole frequency 
interval. Compare the spectrum of this signal with that of its square. The 
frequency splitting (the square having spectral support at other frequencies) 
reveals the nonlinearity involved:

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
ffplot(etfe(u),'r*',etfe(u2),'+')
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4idmdlsimPurpose Simulate idmodel objects in Simulink

Syntax idmdlsim

Description Typing idmdlsim launches the Idmodel block in Simulink. By clicking the block 
you can specify the idmodel to simulate, whether to include initial state values, 
and whether to add noise to the simulation in accordance with the model’s own 
noise description.
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4idmodel Purpose Package common model properties

Description idmodel is an object that the user does not deal with directly. It contains all the 
common properties of the model objects idarx, idgrey, idpoly, idproc, and 
idss, which are returned by the different estimation routines.

Basic Use
If you just estimate models from data, the model objects should be transparent. 
All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m will give a brief 
account of the model. present(m) also gives information about the 
uncertainties of the estimated parameters. get(m) gives a complete list of 
model properties.

Most of the interesting properties can be directly accessed by subreferencing.

m.a
m.da

See the property list obtained by get(m), as well as the property lists of idgrey, 
idarx, idpoly, and idss in Chapter 4, “Function Reference,” for more details 
on this. See also idprops.

The characteristics of the model m can be directly examined and displayed by 
commands like impulse, step, bode, nyquist, and pzmap. The quality of the 
model is assessed by commands like compare and resid. If you have the 
Control System Toolbox, typing view(m) gives access to various display 
functions.

To extract state-space matrices, transfer function polynomials, etc., use the 
commands arxdata, polydata, tfdata, ssdata, and zpkdata.

To compute the frequency response of the model, use the commands idfrd and 
freqresp.

Creating and Modifying Model Objects
If you want to define a model to use, for example, for simulating data, you need 
to use the model creator functions:
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• idarx, for multivariable ARX models

• idgrey, for user-defined gray-box state-space models

• idpoly, for single-output polynomial models

• idproc, for simple, continuous-time process models

• idss, for state-space models

If you want to estimate a state-space model with a specific internal 
parameterization, you need to create an idss model or an idgrey model. See 
the reference pages for these functions.

Dealing with Input and Output Channels
For multivariable models, you construct submodels containing a subset of 
inputs and outputs by simple subreferencing. The outputs and input channels 
can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote no 
channels. The channels can be referenced by number or by name. For several 
names, you must use a cell array, such as

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])

Thus m3 is the model obtained from m by looking at the transfer functions from 
input numbers 1 and 4 (with input names 'power' and 'speed') to output 
number 3 (with name position).

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model,

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when a plot of just some channels 
is desired.
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The Noise Channels
The estimated models have two kinds of input channels: the measured inputs 
u and the noise inputs e. For a general linear model m, we have

(4-2)

where u is the nu-dimensional vector of measured input channels and e is the 
ny-dimensional vector of noise channels. The covariance matrix of e is given by 
the property 'NoiseVariance'. Occasionally this matrix is written in 
factored form,

This means that e can be written as

where  is white noise with identity covariance matrix (independent noise 
sources with unit variances).

If m is a time series (nu = 0), G is empty and the model is given by

For the model m, the restriction to the transfer function matrix G is obtained by 

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously,

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input. That is, 
m2 describes the signal He.

For a system with measured inputs, bode, step, and other transformation and 
display functions deal with the transfer function matrix G. To obtain or graph 
the properties of the disturbance model H, it is therefore important to make the 
transformations m('n'). For example,

bode(m('n'))

plots the additive noise spectra according to the model m, while

y t( ) G q( )u t( ) H q( )e t( )+=

Λ

Λ LLT=

e Lv=

v

y t( ) H q( )e t( )=
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bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it is useful to convert the noise 
channels to measured channels, using the command noisecnv.

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and noise 
sources e, treated as measured signals,. That is, m3 is a model from u and e to 
y, describing the transfer functions G and H. The information about the 
variance of the innovations e is lost. For example, studying the step response 
from the noise channels does not take into consideration how large the noise 
contributions actually are.

To include that information, e should first be normalized, , so that  
becomes white noise with an identity covariance matrix.

m4 = noisecnv(m,'Norm')

This creates a model m4 with u and treated as measured signals.

For example, the step responses from v to y will now reflect the typical size of 
the disturbance influence because of the scaling by L. In both cases, the 
previous noise sources that have become regular inputs will automatically get 
input names that are related to the corresponding output. The unnormalized 
noise sources e have names like 'e@ynam1' (noise e at output channel ynam1), 
while the normalized sources v are called 'v@ynam1'.

Retrieving Transfer Functions
The functions that retrieve transfer function properties, ssdata, tfdata, and 
zpkdata, will thus work as follows for a model (Equation 4-2) with measured 
inputs. (fcn is ssdata, tfdata, or zpkdata.)

fcn(m) returns the properties of G (ny outputs and nu inputs).

fcn(m('n')) returns the properties of the transfer function H (ny outputs and 
ny inputs).

e Lv= v

v

y t( ) G q( )u t( ) H q( )Lv t( )+ G HL
u
v

= =
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fcn(noisec nv(m,'Norm')) returns the properties of the transfer function [G 
HL} (ny outputs and ny+nu inputs). Analogously,

m1 = m('n'). fcn(noisecnv(m1,'Norm')) 

returns the properties of the transfer function HL (ny outputs and ny inputs).

If m is a time-series model, fcn(m) returns the properties of H, while 

fcn(noisecnv(m,'Norm')) 

returns the properties of HL.

Note that the estimated covariance matrix NoiseVariance itself is uncertain. 
This means that the uncertainty information about H is different from that of 
HL.

idmodel 
Properties

In the list below, ny is the number of output channels, and nu is the number of 
input channels:

• Name: An optional name for the data set. An arbitrary string.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1 containing 
the names of the output and input channels. For estimated models, these are 
inherited from the data. If not specified, they are given default names 
{'y1','y2',...} and {'u1','u2',...}.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1 containing 
the units of the output and input channels. Inherited from data for estimated 
models.

• TimeUnit: Unit for the sampling interval.

• Ts: Sampling interval. A nonnegative scalar. Ts = 0 denotes a 
continuous-time model. Note that changing just Ts will not recompute the 
model parameters. Use c2d and d2c for recomputing the model to other 
sampling intervals.

• ParameterVector: Vector of adjustable parameters in the model structure. 
Initial/nominal values or estimated values, depending on the status of the 
model. A column vector.

• PName: The names of the parameters. A cell array of the length of the 
parameter vector. If not specified, it will contain empty strings. See also 
setpname.
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• CovarianceMatrix: Estimated covariance matrix of the parameter vector. 
For a nonestimated model this is the empty matrix. For state-space models 
in the 'Free' parameterization the covariance matrix is also the empty 
matrix, since the individual matrix elements are not identifiable then. 
Instead, in this case, the covariance information is hidden (in the hidden 
property 'Utility') and retrieved by the relevant functions when 
necessary. Setting CovarianceMatrix to 'None' inhibits calculation of 
covariance and uncertainty information. This can save substantial time for 
certain models. See “No Covariance” on page 3-104.

• NoiseVariance: Covariance matrix of the noise source e. An ny-by-ny matrix.

• InputDelay: Vector of size nu-by-1, containing the input delay from each 
input channel. For a continuous-time model (Ts = 0) the delay is measured 
in TimeUnit, while for discrete-time models (Ts > 0) the delay is measured 
as the number of samples. Note the difference between InputDelay and nk 
(which is a property of idarx, idss, and idpoly). 'Nk' is a model structure 
property that tells the model structure to include such an input delay. In that 
case, the corresponding state-space matrices and polynomials will explicitly 
contain Nk input delays. The property InputDelay, on the other hand, is an 
indication that in addition to the model as defined, the inputs should be 
shifted by the given amount. InputDelay is used by sim and the estimation 
routines to shift the input data. When computing frequency responses, the 
InputDelay is also respected. Note that InputDelay can be both positive and 
negative.

• Algorithm: See the reference page for Algorithm Properties.

• EstimationInfo: See the reference page for EstimationInfo.

• Notes: An arbitrary field to store extra information and notes about the 
object.

• UserData: An arbitrary field for any possible use.

Note  All properties can be set or retrieved either by these commands or by 
subscripts. Autofill applies to all properties and values, and is case 
insensitive. 

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m).
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Subreferencing The outputs and input channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([ ]) to denote no 
channels. The channels can be referenced by number or by name. For several 
names, you must use a cell array.

m2 = m('y3',{'u1','u4'})

m3 = m(3,[1 4])

For a single output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single input model,

m5 = m(outputs)

selects the indicated output channels.

The string 'measured' (or any abbreviation like 'm') means the measured 
input channels.

m4 = m(3,'m')
m('m') is the same as m(:,'m')

Similarly, the string 'noise' (or any abbreviation) refers to the noise input 
channels. See “The Noise Channels” on page 4-106 for more details.

Horizontal 
Concatenation

Adding input channels,

m = [m1,m2,...,mN]

creates an idmodel object m, consisting of all the input channels in m1,... mN. 
The output channels of mk must be the same. 

Vertical 
Concatenation

Adding output channels,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1, m2, ..mN. 
The input channels of mk must all be the same.
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Online Help 
Functions

See idhelp. idprops idmodel, help idmodel/subsref, help 
idmodel/subsasgn, help idmodel/horzcat, and help idmodel/vertcat.

See Also noisecnv, nkshift, view, size, idmdlsim, sim
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4idpolyPurpose Create structure for input-output models using numerator and denominator 
polynomials

Syntax m = idpoly(A,B)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts,'Property1',Value1,...

'PropertyN',ValueN)

m = idpoly(mi)

Description idpoly creates a model object containing parameters that describe the general 
multiinput single-output model structure.

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors in the standard MATLAB 
format.

A = [1 a1 a2 ... ana]

consequently describes

A, C, D, and F all start with 1, while B contains leading zeros to indicate the 
delays. See “Polynomial Representation of Transfer Functions” on page 3-11.

For multiinput systems, B and F are matrices with one row for each input. 

For time series, B and F are entered as empty matrices.

B = [];  F = [];

NoiseVariance is the variance of the white noise sequence , while Ts is the 
sampling interval.

Trailing arguments C, D, F, NoiseVariance, and Ts can be omitted, in which 
case they are taken as 1. (If B = [], then F is taken as [].) The property 
name/property value pairs can start directly after B.

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( )= …

Bnu q( )
Fnu q( )
-------------------unu t nknu–( ) C q( )

D q( )
-------------e t( )+ + +

A q( ) 1 a1q 1– … anaq na–+ + +=

e t( )
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Ts = 0 means that the model is a continuous-time one. Then the interpretation 
of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial  in the Laplace variable s, and 
so on. For continuous-time systems, NoiseVariance indicates the level of the 
spectral density of the innovations. A sampled version of the model has the 
innovations variance NoiseVariance/Ts, where Ts is the sampling interval. 
The continuous-time model must have a white noise component in its 
disturbance description. See “Spectrum Normalization and the Sampling 
Interval” on page 3-107. 

For discrete-time models (Ts > 0), note the following: idpoly strips any trailing 
zeros from the polynomials when determining the orders. It also strips leading 
zeros from the B polynomial to determine the delays. Keep this in mind when 
you use idpoly and polydata to modify earlier estimates to serve as initial 
conditions for estimating new structures. See “Initial Parameter Values” on 
page 3-99.

idpoly can also take any single-output idmodel or LTI object mi as an input 
argument. If an LTI system has an input group with name 'Noise', these 
inputs are interpreted as white noise with unit variance, and the noise model 
of the idpoly model is computed accordingly.

Properties • na, nb, nc, nd, nf, nk: The orders and delays of the polynomials. Integers or 
row vectors of integers.

• a, b, c, d, f: The polynomials, described by row vectors and matrices as 
detailed above.

• da, db, dc, dd, df: The estimated standard deviation of the polynomials. 
Cannot be set.

• InitialState: How to deal with the initial conditions that are required to 
compute the prediction of the output. Possible values are

- 'Estimate': The necessary initial states are estimated from data as extra 
parameters.

- 'Backcast': The necessary initial states are estimated by a backcasting 
(backward filtering) process, described in Knudsen (1994).

- 'Zero': All initial states are taken as zero.

- 'Auto': An automatic choice among the above is made, guided by the data.

s3 2s2 3s 4+ + +
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In addition, any idpoly object also has all the properties of idmodel. See 
idmodel properties and Algorithm Properties.

Note that you can set or retrieve all properties either with the set and get 
commands or by subscripts. Autofill applies to all properties and values, and 
these are case insensitive.

m.a=[1 -1.5 0.7];
set(m,'ini','b')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops idpoly.

Examples To create a system of ARMAX, type

A = [1 -1.5 0.7];
B = [0 1 0.5];
C = [1 -1 0.2];
m0 = idpoly(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model

Sample it with T = 0.1 and then simulate it without noise.

B=[0 1;1 3];
F=[1 1 0;1 2 4]
m = idpoly(1,B,1,1,F,1,0)
md = c2d(m,0.1)
y = sim(md,[u1 u2])

Note that the continuous-time model is automatically sampled to the sampling 
interval of the data, when simulated, so the above is also achieved by

u = iddata([],[u1 u2],0.1)
y = sim(m,u)

References Ljung (1999) Section 4.2 for the model structure family. 

y t( ) 1
s s 1+( )
--------------------u1 t( ) s 3+

s2 2s 4+ +
----------------------------u2 t( ) e t( )+ +=
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Knudsen, T., (1994), “A new method for estimating ARMAX models,” In Proc. 
10th IFAC Symposium on System Identification, pp. 611-617, Copenhagen, 
Denmark, for the backcast method.

See Also sim, idss
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4idprocPurpose Create simple, continuous-time process models

Syntax m = idproc(Type)
m = idproc(Type,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(Data,Type) % to directly estimate an idproc model

Description The function idproc is used to create typical simple, continuous-time process 
models as idproc objects. The model has one output, but can have several 
inputs.

The character of the model is defined by the argument Type. This is an acronym 
made up of the following symbols:

• P: All 'Type' acronyms start with this letter.

• 0, 1, 2, or 3: This integer denotes the number of time constants (poles) to be 
modeled. Possible integrations (poles in the origin) are not included in this 
number.

• I: The letter I is included to mark that an integration is enforced 
(self-regulation process).

• D: The letter D is used to mark that the model contains a time delay (dead 
time).

• Z: The letter Z is used to mark an extra numerator term: a zero.

• U: The letter U is included to mark that underdamped modes 
(complex-valued poles) are permitted. If U is not included, all poles are 
restricted to be real.

This means, for example, that Type = 'P1D' corresponds to the model with 
transfer function

while Type = 'P0I' is

and Type = 'P3UZ' is

G s( )
Kp

1 sTp1+
----------------------e

Tds–
=

G s( )
Kp
s

-------=
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For multiinput systems, Type is a cell array where each cell describes the 
character of the model from the corresponding input, like 
Type = {'P1D'.'P0I'} for the two-input model

(4-3)

The parameters of the model are

• Kp: The static gain

• Tp1, Tp2, Tp3: The real-time constants (corresponding to poles in 1/Tp1, etc.)

• Tw and Zeta: The “resonance time constant” and the damping factor 
corresponding to a denominator factor (1+2 Zeta Tw s + (Tw s)^2). If 
underdamped modes are allowed, Tw and Zeta replace Tp1 and Tp2. A third 
real pole, Tp3, could still be included.

• Td: The time delay

• Tz: The numerator zero

These properties contain fields that give the values of the parameters, upper 
and lower bounds, and information whether they are locked to zero, have a 
fixed value, or are to be estimated. For multiinput models, the number of 
entries in these fields equals the number of inputs. This is described in more 
detail below.

The idproc object is a child of idmodel. Therefore any idmodel properties can 
be set as property name/property value pairs in the idproc command. They can 
also be set by the command set, or by subassignment, as in

m.InputName = {'speed','voltage'}
m.kp = 12

In the multiinput case, models for specific inputs can be obtained by regular 
subreferencing.

m(ku)

G s( ) Kp
1 Tzs+

1 2ςTws Tws( )2+ +( ) 1 Tp3s+( )
-------------------------------------------------------------------------------------=

Y s( )
Kp 1( )

1 sTp1 1( )+
-------------------------------e

Tds–
U1 s( )

Kp 2( )
s

---------------U2 s( )+=
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There are also two properties, DisturbanceModel and InitialState, that can 
be used to expand the model. See below.

idproc 
Properties

• Type: A string or a cell array of strings with as many elements as there are 
inputs. The string is an acronym made up of the characters P, Z, I, U, D and 
an integer between 0 and 3. The string must start with P, followed by the 
integer, while possible other characters can follow in any order. The integer 
is the number of poles (not counting a possible integration), Z means the 
inclusion of a numerator zero, D means inclusion of a time delay, while U 
marks that the modes can be underdamped (a pair of complex conjugated 
poles). I means that an integration in the model is enforced.

• Kp, Tp1, Tp2, Tp3, Tw, Zeta, Tz, Td: These are the parameters as explained 
above. Each of these is a structure with the following fields:

- value: Numerical value of the parameter. 

- max: Maximum allowed value of the parameter when it is estimated.

- min: Minimum allowed value of the parameter when it is estimated. For 
multiinput models, these are row vectors.

- status: Assumes one of  'Estimate', 'Fixed', or 'Zero'. 

'Zero' means that the parameter is locked to zero and not included in the 
model. Assigning, for example, Type = 'P1' means that the status of Tp2, 
Tp3, Tw, and Zeta will be 'Zero'. 

The value 'Fixed' means that the parameter is fixed to its value, and will 
not be estimated. 

The value 'Estimate' means that the parameter value should be 
estimated.

For multiinput modes, status is a cell array with one element for each 
input, while value, max, and min are row vectors.

•  DisturbanceModel: Allows an additive disturbance model as in

(4-4)

where G(s) is a process model and e(t) is white noise, and C/D is a first- or 
second-order transfer function.

DisturbanceModel can assume the following values:

- 'None': This is the default. No disturbance model is included (that is, 
C=D=1).

y t( ) G s( )u t( ) C s( )
D s( )
------------e t( )+=
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- 'arma1': The disturbance model is a first-order ARMA model (that is, C 
and D are first-order polynomials).

- 'arma2' or 'Estimate': The disturbance model is a second-order ARMA 
model (that is, C and D are second-order polynomials).

When a disturbance model has been estimated, the property 
DisturbanceModel is returned as a cell array, with the first entry being the 
status as just defined, and the second entry being the actual model, delivered 
as a continuous-time idpoly object.

• InitialState: Affects the parameterization of the initial values of the states 
of the model. It assumes the same values as for other models: 

- 'Zero': The initial states are fixed to zero.

- 'Estimate': The initial states are treated as parameters to be estimated.

- 'Backcast': The initial state vector is adjusted, during the parameter 
estimation step, to a suitable value, but it is not stored.

- 'Auto': Makes a data-dependent choice among the values above.

• InputLevel: The offset level of the input signal(s). This is of particular 
importance for those input channels that contain an integration. InputLevel 
will then define the level from which the integration takes place, and that 
cannot be handled by estimating initial states. InputLevel has the same 
structure as the model parameters Kp, etc., and thus contains the following 
fields:

- value: Numerical value of the parameter. For multiinput models, this is a 
row vector.

- max: Maximum allowed value of the parameter when it is estimated.

- min: Minimum allowed value of the parameter when it is estimated. For 
multiinput models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero' with the same 
interpretations.

In addition, any idproc object also has all the properties of idmodel. See 
Algorithm Properties, EstimationInfo, and idmodel.

Note that all properties can be set or retrieved using either the set and get 
commands or subscripts. Autofill applies to all properties and values, and these 
are case insensitive. Also 'u' and 'y' are short for 'Input' and 'Output', 
respectively. You can also set all properties at estimation time as property 
name/property value pairs in the call to pem. An extended syntax allows direct 
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setting of the fields of the parameter values, so that assigning a numerical 
value is automatically attributed to the value field, while a string is attributed 
to the status field.

m.kp = 10
m.tp1 = 'estimate'
m = pem(Data,'P1D','kp',10) % initializing the parameter Kp in 10
m = pem(Data,'P1D','kp',10,'kp','fix') % fixing the parameter Kp 
to the value 10
m.= pem(Data,'P2U','kp',{'max',4},'kp',{'min',3}) % constraining 
Kp to lie between 3 and 4.
m = pem(Data,{'P2I','P1D',},'ulevel',{'est','zer'}) % two inputs, 
estimate the offset level
                                                                                     
% of the first one
m = pem(Data,'P2U','dist','est') % estimate a noise model
m = pem(Data,'P2U','dist',{'fix',noimod}) % use a fixed 
noisemodel, given by the continuous-time idpoly model noimod
m.kp.min(2) = 12 % (minimum Kp for the second input)
m.kp.status{2} = 'fix' % fixing the gain for the second input.

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops and idproc.

 Examples m = pem(Data,'P2D','dist','arma1')
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4idssPurpose Create structure for linear state-space models with known and unknown 
parameters

Syntax m = idss(A,B,C,D)
m = idss(A,B,C,D,K,x0,Ts,'Property1',Value1,...,'PropertyN',ValueN)
mss = idss(m1)

Description The function idss is used to construct state-space model structures with 
various parameterizations. It is a complement to idgrey and deals with 
parameterizations that do not require the user to write a special M-file. Instead 
it covers parameterizations that are either 'Free', that is, all parameters in 
the A, B, and C matrices can be adjusted freely, or 'Canonical', meaning that 
the matrices are parameterized as canonical forms. The parameterization can 
also be 'Structured', which means that certain elements in the state-space 
matrices are free to be adjusted, while others are fixed. This is explained below. 

Ts is the sampling interval. Ts = 0 means a continuous-time model. The default 
is Ts = 1.

The idss object m describes state-space models in innovations form of the 
following kind:

Here  is the time derivative  for a continuous-time model and  
for a discrete-time model.

The model m will contain information both about the nominal/initial values of 
the A, B, C, D, K, and X0 matrices and about how these matrices are 
parameterized by the parameter vector  (to be estimated).

The nominal model is defined by idss(A,B,C,D,K,X0). If K and X0 are omitted, 
they are taken as zero matrices of appropriate dimensions. 

Defining an idss object from a given model,

mss = idss(m1)

x̃ t( ) A θ( )x t( ) B θ( )u t( ) K θ( )e t( )+ +=

x 0( ) x0 θ( )=

y t( ) C θ( )x t( ) D θ( )u t( ) e t( )+ +=

x̃ t( ) x· t( ) x t Ts+( )

θ
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constructs an idss model from any idmodel or LTI system m1.

If m1 is an LTI system (ss, tf, or zpk) that has no InputGroup called 'Noise', 
the corresponding state-space matrices A, B, C, D are used to define the idss 
object. The Kalman gain K is then set to zero.

If the LTI system has an InputGroup called 'Noise', these inputs are 
interpreted as white noise with a covariance matrix equal to the identity 
matrix. The corresponding Kalman gain and noise variance are then computed 
and entered into the idss model together with A, B, C, and D.

Parameterizations
There are several different ways to define the parameterization of the 
state-space matrices. The parameterization determines which parameters can 
be adjusted to data by the parameter estimation routine pem.

• Free black-box parameterizations: This is the default situation and 
corresponds to letting all parameters in A, B, and C be freely adjustable. You 
do this by setting the property 'SSParameterization' = 'Free'. The 
parameterizations of D, K, and X0 are then determined by the following 
properties:

- 'nk': A row vector of the same length as the number of inputs. The kuth 
element is the delay from input channel number ku. Thus nk = [0,...,0] 
means that there is no delay from any of the inputs, and that consequently 
all elements of the D matrix should be estimated. nk =[1,...,1] means 
that there is a delay of 1 from each input, so that the D matrix is fixed to 
be zero.

- 'DisturbanceModel': This property affects the parameterization of K and 
can assume the following values:

'Estimate': All elements of the K matrix are to be estimated.

'None': All elements of K are fixed to zero.

'Fixed': All elements of K are fixed to their nominal/initial values.
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- 'InitialState': Affects the parameterization of X0 and can assume the 
following values:

'Auto': An automatic choice of the following is made, depending on data 
(default).

'Estimate': All elements of X0 are to be estimated.

'Zero': All elements of X0 are fixed to zero.

'Fixed': All elements of X0 are fixed to their nominal/initial values.

'Backcast': The vector X0 is adjusted, during the parameter estimation 
step, to a suitable value, but it is not stored as an estimation result.

• Canonical black-box parameterizations: You do this by setting the property 
'SSParameterization' = 'Canonical'. The matrices A, B, and C are then 
parameterized as an observer canonical form, which means that ny (number 
of output channels) rows of A are fully parameterized while the others 
contain 0’s and 1’s in a certain pattern. The C matrix is built up of 0’s and 1’s 
while the B matrix is fully parameterized. See Equation (A.16) in Ljung 
(1999) for details. The exact form of the parameterization is affected by the 
property 'CanonicalIndices'. The default value 'Auto' is a good choice. 
The parameterization of the D, K, and X0 matrices in this case is determined 
by the properties 'nk', 'DisturbanceModel', and 'InitialState'.

• Arbitrarily structured parameterizations: The general case, where arbitrary 
elements of the state-space matrices are fixed and others can be freely 
adjusted, corresponds to the case 'SSParameterization' = 'Structured'. 
The parameterization is determined by the idss properties As, Bs, Cs, Ds, Ks, 
and X0s. These are the structure matrices that are “shadows” of the 
state-space matrices, so that an element in these matrices that is equal to 
NaN indicates a freely adjustable parameter, while a numerical value in these 
matrices indicates that the corresponding system matrix element is fixed 
(nonadjustable) to this value. 

idss Properties • SSParameterization has the following possible values:

- 'Free': Means that all parameters in A, B, and C are freely adjustable, 
and the parameterizations of D, K, and X0 depend on the properties 'nk', 
'DisturbanceModel', and 'InitialState'.

- 'Canonical': Means that A and C are parameterized as an observer 
canonical form. The details of this parameterization depend on the 
property 'CanonicalIndices'. The B matrix is always fully 
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parameterized, and the parameterizations of D, K, and X0 depend on the 
properties 'nk', 'DisturbanceModel', and 'InitialState'.

- 'Structured': Means that the parameterization is determined by the 
properties (the structure matrices) 'As', 'Bs', 'Cs', 'Ds', 'Ks', and 
'X0s'. A NaN in any position in these matrices denotes a freely adjustable 
parameter, and a numeric value denotes a fixed and nonadjustable 
parameter.

• nk: A row vector with as many entries as the number of input channels. The 
entry number k denotes the time delay from input number k to y(t). This 
property is relevant only for 'Free' and 'Canonical' parameterizations. If 
any delay is larger than 1, the structure of the A, B, and C matrices will 
accommodate this delay, at the price of a higher-order model.

• DisturbanceModel has the following possible values:

- 'Estimate': Means that the K matrix is fully parameterized.

- 'None': Means that the K matrix is fixed to zero. This gives a so-called 
output-error model, since the model output depends on past inputs only.

- 'Fixed': Means that the K matrix is fixed to the current nominal values.

• InitialState has the following possible values:

- 'Estimate': Means that X0 is fully parameterized.

- 'Zero': Means that X0 is fixed to zero.

- 'Fixed': Means that X0 is fixed to the current nominal value.

- 'Backcast': The value of X0 is estimated by the identification routines as 
the best fit to data, but it is not stored.

- 'Auto': Gives an automatic and data-dependent choice among 
'Estimate', 'Zero', and 'Backcast'.

• A, B, C, D, K, and X0: The state-space matrices that can be set and retrieved at 
any time. These contain both fixed values and estimated/nominal values.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the 
state-space matrices. These cannot be set, only retrieved. Note that these are 
not defined for an idss model with 'Free' SSParameterization. You can 
then convert the parameterization to 'Canonical' and study the 
uncertainties of the matrix elements in that form.

• As, Bs, Cs, Ds, Ks, and X0s: These are the structure matrices that have the 
same sizes as A, B, C, etc., and show the freely adjustable parameters as NaNs 
in the corresponding position. These properties are used to define the model 
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structure for 'SSParameterization' = 'Structured'. They are always 
defined, however, and can be studied also for the other parameterizations.

• CanonicalIndices: Determines the details of the canonical 
parameterization. It is a row vector of integers with as many entries as there 
are outputs. They sum up to the system order. This is the so-called 
pseudocanonical multiindex with an exact definition, for example, on page 
132 in Ljung (1999). A good default choice is 'Auto'. This property is 
relevant only for the canonical parameterization case. Note however, that for 
'Free' parameterizations, the estimation algorithms also store a 
canonically parameterized model to handle the model uncertainty.

In addition to these properties, idss objects also have all the properties of the 
idmodel object. See idmodel properties, Algorithm Properties, and 
EstimationInfo.

Note that all properties can be set and retrieved either by the set and get 
commands or by subscripts. Autofill applies to all properties and values, and 
these are case insensitive.

m.ss='can'
set(m,'ini','z')
p = eig(m.a)

For a complete list of property values, use get(m). To see possible value 
assignments, use set(m). See also idprops idss.

Examples Define a continuous-time model structure corresponding to

with initial values

x·
θ1 0

0 θ2

x
θ3

θ4

u+=

y 1 1 x e+=
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and estimate the free parameters.

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0
m0 = idss(A,B,C,D);
m0.As = [NaN,0;0,NaN];
m0.Bs = [NaN;NaN];
m0.Cs = [1,1];
m0.Ts = 0;
m = pem(z,m0);

Estimate a model in free parameterization. Convert it to continuous time, then 
convert it to canonical form and continue to fit this model to data.

m1 = n4sid(data,3);
m1 = d2c(m1);
m1.ss ='can';
m = pem(data,m1);

All of this can be done at once by

m = pem(data,3,'ss','can','ts',0)

See Also n4sid, pem, setstruc

θ

0.2–
0.3–
2
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4impulsePurpose Plot impulse response  with confidence regions

Syntax impulse(m)
impulse(data)
impulse(m,'sd',sd,Time)
impulse(m,'sd',sd,Time,'fill')
impulse(data,'sd',sd,'pw',na,Time)
impulse(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
impulse(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,

mN,'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = impulse(m)
mod = impulse(data)

Description impulse can be applied both to idmodels and to iddata sets, as well as to any 
mixture.

For a discrete-time idmodel m, the impulse response y and, when required, its 
estimated standard deviation ysd, are computed using sim. When called with 
output arguments, y, ysd, and the time vector t are returned. When impulse is 
called without output arguments, a plot of the impulse response is shown. If sd 
is given a value larger than zero, a confidence region around zero is drawn. It 
corresponds to the confidence of sd standard deviations. In the plots, the 
impulse is inversely scaled with the sampling interval so that it has the same 
energy regardless of the sampling interval.

Adding an argument 'fill' among the input arguments gives an uncertainty 
region marked by a filled area rather than by dash-dotted lines.

Setting the Time Interval
You can specify the start time T1 and the end time T2 using Time= [T1 T2]. If 
T1 is not given, it is set to -T2/4. The negative time lags (the impulse is always 
assumed to occur at time 0) show possible feedback effects in the data when the 
impulse is estimated directly from data. If Time is not specified, a default value 
is used.

Estimating the Impulse Response from data
For an iddata set data, impulse(data) estimates a high-order, noncausal FIR 
model after first having prefiltered the data so that the input is “as white as 
possible.” The impulse response of this FIR model and, when asked for, its 
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confidence region, are then plotted. Note that it is not always possible to deliver 
the demanded time interval when the response is estimated. A warning is then 
issued. When called with an output argument, impulse, in the iddata case, 
returns this FIR model, stored as an idarx model. The order of the 
prewhitening filter can be specified by the property name/property value pair 
'pw'/na. The default value is na = 10.

Several Models/Data Sets
Any number and any mixture of models and data sets can be used as input 
arguments. The responses are plotted with each input/output channel (as 
defined by the model and data set InputName and OutputName properties) as a 
separate plot. Colors, line styles, and marks can be defined by PlotStyle 
values. These are the same as for the regular plot command, as in 

impulse(m1,'b-*',m2,'y--',m3,'g')

Noise Channels
The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with unit variance, normalized noise source v:

• impulse(m) plots the impulse response of the transfer function G.

• impulse(m('n')) plots the impulse response of the transfer function H (ny 
inputs and ny outputs).The input channels have names e@yname, where 
yname is the name of the corresponding output.

• If m is a time series, that is nu = 0, impulse(m) plots the impulse response 
of the transfer function H.

• impulse(noisecnv(m)) plots the impulse response of the transfer function 
[G H] (nu+ny inputs and ny outputs). The noise input channels have names 
e@yname, where yname is the name of the corresponding output.

Λ

y Gu He+=
cov e( ) Λ LL′= =

Λ

y Gu HLv+=
cov v( ) I=
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• impulse(noisecnv(m,'norm')) plots the impulse response of the transfer 
function [G HL] (nu+ny inputs and ny outputs). The noise input channels 
have names v@yname, where yname is the name of the corresponding output.

Arguments If impulse is called with a single idmodel m, the output argument y is a 3-D 
array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector t, 
ny is the number of output channels, and nu is the number of input channels. 
Thus y(:,ky,ku) is the response in output ky to an impulse in the kuth input 
channel.

ysd has the same dimensions as y and contains the standard deviations of y.

If impulse is called with an output argument and a single data set in the input 
arguments, the output is returned as an idarx model mod containing the 
high-order FIR model and its uncertainty. By calling impulse with mod, the 
responses can be displayed and returned without your having to redo the 
estimation.

Examples impulse(data,'sd',3) estimates and plots the impulse response. To take a 
closer look at subsystems, do the following:

mod = impulse(data)
impulse(mod(2,3),'sd',3)

See Also cra, step
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4initPurpose Set or randomize initial parameter values

Syntax m = init(m0)
m = init(m0,R,pars,sp)

Description This function randomizes initial parameter estimates for model structures m0 
for any idmodel type. m is the same model structure as m0, but with a different 
nominal parameter vector. This vector is used as the initial estimate by pem.

The parameters are randomized around pars with variances given by the row 
vector R. Parameter number k is randomized as pars(k) + e*sqrt(R(k)), 
where e is a normal random variable with zero mean and a variance of 1. The 
default value of R is all ones, and the default value of pars is the nominal 
parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only models 
that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires stability 
only of the predictor. sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means without 
any random search. To just stabilize such an initial model, set R = 0. With 
R > 0, randomization is also done.

For model structures where a random search is necessary to find a stable 
model/predictor, a maximum of 100 trials is made by init. It can be difficult to 
find a stable predictor for high-order systems by trial and error.

See Also idss, n4sid, pem
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4isrealPurpose Determine whether model or data set contains real parameters or data

Syntax isreal(Data)
isreal(Model)

Description Data is an iddata set and Model is any idmodel. The isreal function returns 
1 if all parameters of the model are real and if all signals of the data set are 
real.

See Also realdata
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4ivarPurpose Estimate AR model using instrumental variable methods

Syntax m = ivar(y,na)
m = ivar(y,na,nc,maxsize)

Description The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal to be 
modeled, entered as an iddata object (outputs only). na is the order of the A 
polynomial (the number of A parameters). The resulting estimate is returned 
as an idpoly model m. The routine is for scalar time-domain signals only. 

In the above model,  is an arbitrary process, assumed to be a moving 
average process of order nc, possibly time varying. (Default is nc = na.) 
Instruments are chosen as appropriately filtered outputs, delayed nc steps. 

The optional argument maxsize is explained under Algorithm Properties.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and by the 
forward-backward least squares method.

y = iddata(sin([1:500]'∗1.2) + sin([1:500]'∗1.5) + 
0.2∗randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
bode(miv,mls)

References Stoica, P., et al., Optimal Instrumental variable estimates of the AR-parameters 
of an ARMA process, IEEE Trans. Autom. Control, Vol. AC-30, 1985, 
pp. 1066-1074.

See Also ar, etfe, spa 

A q( )y t( ) v t( )=
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4ivstrucPurpose Compute loss functions for sets of output-error model structures

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type. 
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy 
generation of typical NN matrices for single-input systems.

ze and zv are iddata objects containing output-input data. Only time-domain 
data is supported. Models for each model structure defined in NN are estimated 
using the instrumental variable (IV) method on data set ze. The estimated 
models are simulated using the inputs from data set zv. The normalized 
quadratic fit between the simulated output and the measured output in zv is 
formed and returned in v. The rows below the first row in v are the transpose 
of NN, and the last row contains the logarithms of the condition numbers of the 
IV matrix

A large condition number indicates that the structure is of unnecessarily high 
order (see page 498 in Ljung (1999)). 

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed. For 
the use of maxsize, see Algorithm Properties. 

The routine is for single-output systems only.

Note  The IV method used does not guarantee that the models obtained are 
stable. The output-error fit calculated in v can then be misleading.

ς t( )ϕT t( )∑
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Examples Compare the effect of different orders and delays, using the same data set for 
both the estimation and validation.

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z,nn);

Algorithm A maximum-order ARX model is computed using the least squares method. 
Instruments are generated by filtering the input(s) through this model. The 
models are subsequently obtained by operating on submatrices in the 
corresponding large IV matrix.

See Also arxstruc, iv4, n4sid, selstruc, struc
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4ivxPurpose Estimate parameters of ARX model using the instrumental variable (IV) 
method with arbitrary instruments

Syntax m = ivx(data,orders,x)
m = ivx(data,orders,x,maxsize)

Description ivx is a routine analogous to the iv4 routine, except that you can use arbitrary 
instruments. These are contained in the matrix x. Make this the same size as 
the output, data.y. In particular, if data contains several experiments, x must 
be a cell array with one matrix/vector for each experiment. The instruments 
used are then analogous to the regression vector itself, except that y is replaced 
by x.

Note that ivx does not return any estimated covariance matrix for m, since that 
requires additional information. m is returned as an idpoly object for 
single-output systems and as an idarx object for multioutput systems.

Use iv4 as the basic IV routine for ARX model structures. The main interest in 
ivx lies in its use for nonstandard situations, for example, when there is 
feedback present in the data, or when other instruments need to be tried out. 
Note that there is also an IV version that automatically generates instruments 
from certain filters you define (type help iv).

References Ljung (1999), page 222.

See Also iv4, ivar



iv4

4-136

4iv4Purpose Estimate ARX model using four-stage instrumental variable method

Syntax m = iv4(data,orders)
m = iv4(data,'na',na,'nb',nb,'nk',nk)
m= iv4(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description This function is an alternative to arx and the use of the arguments is entirely 
analogous to the arx function. The main difference is that the procedure is not 
sensitive to the color of the noise term  in the model equation.

For an interpretation of the loss function (innovations covariance matrix), see 
“Interpretation of the Loss Function” on page 3-109.

Examples Here is an example of a two-input, one-output system with different delays on 
the inputs  and .

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates the 
instruments for a second-stage IV estimate. The residuals obtained from this 
model are modeled as a high-order AR model. At the fourth stage, the 
input-output data is filtered through this AR model and then subjected to the 
IV function with the same instrument filters as in the second stage.

For the multioutput case, optimal instruments are obtained only if the noise 
sources at the different outputs have the same color. The estimates obtained 
with the routine are reasonably accurate, however, even in other cases.

References Ljung (1999), equations (15.21) through (15.26).

See Also arx, oe

e t( )

u1 u2



LTI Commands

4-137

4LTI CommandsPurpose Allow direct calls to LTI commands from idmodel objects (requires Control 
System Toolbox)

Syntax append, augstate, balreal, canon, d2d, feedback, inv, minreal, 
modred, norm, parallel, series, ss2ss

Description If you have the Control System Toolbox, most of the relevant LTI commands, 
listed above, can be directly applied to any idmodel (idarx, idgrey, idpoly, 
idss). You can also use the overloaded operations +, -, and *. The same 
operations are performed and the result is delivered as an idmodel. The 
original covariance information is lost most of the time, however.

Examples You have two more or less identical processes connected in series. Estimate a 
model for one of them, and use that to form an initial estimate for a model of 
the connected process.

m = pem(data) % data concerns one of the processes
m2 = pem(data2,m*m) % data2 is from the whole connected process
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4merge (iddata)Purpose Merge data sets into one iddata object

Syntax dat = merge(dat1,dat2,....,datN)

Description dat collects the data sets in dat1,.. datN into one iddata object, with several 
experiments. The number of experiments in dat will be the sum of the number 
of experiments in datk. For the merging to be allowed, a number of conditions 
must be satisfied:

• All of datk must have the same number of input channels, and the 
InputNames must be the same.

• All of datk must have the same number of output channels, and the 
OutputNames must be the same. If some input or output channel is lacking in 
one experiment, it can be replaced by a vector of NaNs to conform with these 
rules.

• If the ExperimentNames of datk have been specified as something other than 
the default 'Exp1', 'Exp2', etc., they must all be unique. If default names 
overlap, they are modified so that dat will have a list of unique 
ExperimentNames.

The sampling intervals, the number of observations, and the input properties 
(Period, InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp. 
You can also retrieve them by subreferencing with a fourth index.

dat1 = dat(:,:,:,ExperimentNumber) or 

dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful for 
handling experimental data that has been collected on different occasions, or 
when a data set has been split up to remove “bad” portions of the data. All the 
toolbox’s routines accept multiple-experiment data.

Examples Bad portions of data have been detected around sample 500 and between 
samples 720 to 730. Cut out these bad portions and form a multiple-experiment 
data set that can be used to estimate models without the bad data destroying 
the estimate.

dat = merge(dat(1:498),dat(502:719),dat(719:1000))
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m = pem(dat)

Use the first two parts to estimate the model and the third one for validation.

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

See also iddemo #9.

See Also iddata, getexp
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4merge (idmodel)Purpose Merge estimated models

Syntax m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description The models m1,m2,...,mN must all be of the same structure, just differing in 
parameter values and covariance matrices. Then m is the merged model, where 
the parameter vector is a statistically weighted mean (using the covariance 
matrices to determine the weights) of the parameters of mk.

When two models are merged, 

[m, tv] = merge(m1,m2)

returns a test variable tv. It is  distributed with n degrees of freedom, if the 
parameters of m1 and m2 have the same means. Here n is the length of the 
parameter vector. A large value of tv thus indicates that it might be 
questionable to merge the models.

Merging models is an alternative to merging data sets and estimating a model 
for the merged data. Consequently,

m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

lead to models ma and mb that are related and should be close. The difference is 
that merging the data sets assumes that the signal-to-noise ratios are about 
the same in the two experiments. Merging the models allows one model to be 
much more uncertain, for example, due to more disturbances in that 
experiment. If the conditions are about the same, we recommend that you 
merge data rather than models, since this is more efficient and typically 
involves better conditioned calculations.

χ2
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4midprefsPurpose Set directory for storing idprefs.mat containing GUI startup information

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables for 
customized choices. These include the window layout, the default choices of 
plot options, and names and directories of the four most recent sessions with 
ident. This information is stored in the file idprefs.mat, which should be 
placed on the user’s MATLABPATH. The default, automatic location for this file is 
in the same directory as the user’s startup.m file.

midprefs is used to select or change the directory where you store 
idprefs.mat. Either type midprefs and follow the instructions, or give the 
directory name as the argument. Include all directory delimiters, as in the PC 
case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX case

midprefs('/home/ljung/matlab/')

See Also ident
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4misdataPurpose Reconstruct missing input and output data

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

Description Data is time-domain input-output data in the iddata object format. Missing 
data samples (both in inputs and in outputs) are entered as NaNs. 

Datae is an iddata object where the missing data has been replaced by 
reasonable estimates.

Model is any idmodel (idarx, idgrey, idpoly, idss) used for the reconstruction 
of missing data.

If no suitable model is known, it is estimated in an iterative fashion using 
default order state-space models.

Maxiter is the maximum number of iterations carried out (the default is 10). 
The iterations are terminated when the difference between two consecutive 
data estimates differs by less than tol%. The default value of tol is 1.

Algorithm For a given model, the missing data is estimated as parameters so as to 
minimize the output prediction errors obtained from the reconstructed data. 
See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is 
not the best approach from a statistical point of view, but is a good 
approximation in many cases.

When no model is given, the algorithm alternates between estimating missing 
data and estimating models, based on the current reconstruction. 
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4nkshiftPurpose Shift data sequences

Syntax Datas = nkshift(Data,nk)

Description Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels in 
Data.

Datas is an iddata object where the input channels in Data have been shifted 
according to nk. A positive value of nk(ku) means that input channel number 
ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For 
frequency-domain data it multiplies with  to obtain the same effect as 
shifting in the time domain. For continuous-time frequency-domain data 
(Ts = 0), nk should be interpreted as the shift in seconds.

nkshift lives in symbiosis with the InputDelay property of idmodel:

m1 = pem(dat,4,'InputDelay',nk) 

is related to

m2 = pem(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay information 
for use when frequency responses, etc., are computed.

Note the difference from the idss and idpoly property nk.

m3 = pem(dat,4,'nk',nk) 

gives a model that itself explicitly contains a delay of nk samples.

See Also idss, Algorithm Properties

einkωT
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4noisecnvPurpose Convert idmodel with noise channels to model with only measured channels

Syntax mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'norm')

Description mod is any idmodel, idarx, idgrey, idpoly, or idss. 

The noise input channels in mod are converted as follows: Consider a model 
with both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that mod.NoiseVariance = . The 
model can also be described with unit variance, normalized noise source v:

• mod1 = noisecnv(mod) converts the model to a representation of the system 
[G H] with nu+ny inputs and ny outputs. All inputs are treated as measured, 
and mod1 does not have any noise model. The former noise input channels 
have names e@yname, where yname is the name of the corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a representation of the 
system [G HL] with nu+ny inputs and ny outputs. All inputs are treated as 
measured, and mod2 does not have any noise model. The former noise input 
channels have names v@yname, where yname is the name of the corresponding 
output. Note that the noise variance matrix factor L typically is uncertain 
(has a nonzero covariance). This is taken into account in the uncertainty 
description of mod2.

• If mod is a time series, that is, nu = 0, mod1 is a model that describes the 
transfer function H with measured input channels. Analogously, mod2 
describes the transfer function HL.

Λ

y Gu He+=
cov e( ) Λ LL′= =

Λ

y Gu HLv+=
cov v( ) I=
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Note the difference with subreferencing:

• mod('m') gives a description of G only.

• mod('n') gives a description of the noise model characteristics as a 
time-series model, that is, it describes H and also the covariance of e. In 
contrast, noisecnv(m('n')) describes just the transfer function H. To obtain 
a description of the normalized transfer function HL, use 
noisecnv(m('n'),'norm')

Converting the noise channels to measured inputs is useful to study the 
properties of the individual transfer functions from noise to output. It is also 
useful for transforming idmodel objects to representations that do not handle 
disturbance descriptions explicitly.
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4nuderstPurpose Set step size for numerical differentiation

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the model 
parameters when applied to state-space structures. The same is true for many 
functions that transform model uncertainties to other representations. 

The step size used in these numerical derivatives is determined by the M-file 
nuderst. The output argument nds is a row vector whose kth entry gives the 
increment to be used when differentiating with respect to the kth element of 
the parameter vector pars. 

The default version of nuderst uses a very simple method. The step size is the 
maximum of  times the absolute value of the current parameter and . 
You can adjust this to the actual value of the corresponding parameter by 
editing nuderst. Note that the nominal value, for example 0, of a parameter 
might not reflect its normal size. 

10 4– 10 7–
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4nyquistPurpose Plot Nyquist curve of frequency function  with confidence regions

Syntax nyquist(m)
[fr,w] = nyquist(m)
[fr,w,covfr] = nyquist(m)
nyquist(m1,m2,m3,...,w)
nyquist(m1,'PlotStyle1',m2,'PlotStyle2',...)
nyquist(m1,m2,m3,..'sd*5',sd,'mode',mode)

Description nyquist computes the complex-valued frequency response of idmodel and 
idfrd models. When invoked without left-hand arguments, nyquist produces 
a Nyquist plot on the screen, that is, a graph of the frequency response’s 
imaginary part against its real part.

The argument m is an arbitrary idmodel or idfrd model. This model can be 
continuous or discrete, and SISO or MIMO. The InputNames and OuputNames 
of the models are used to plot the responses for different I/O channels in 
separate plots. Pressing the Enter key advances the plot from one input-output 
pair to the next one. You can select specific I/O channels with normal 
subreferencing: m(ky,ku). With mode = 'same', all plots are given in the same 
diagram.

nyquist(m,w) explicitly specifies the frequency range or frequency points to be 
used for the plot. To focus on a particular frequency interval [wmin,wmax], set 
w = {wmin,wmax}. (Notice the curly brackets.) To use particular frequency 
points, set w to the vector of desired frequencies. Use logspace to generate 
logarithmically spaced frequency vectors. All frequencies should be specified in 
rad/s.

nyquist(m1,m2,...,mN) or nyquist(m1,m2,...mN,w) plots the Bode 
responses of several idmodels or idfrd models on a single figure. The models 
can be mixes of different sizes, and continuous or discrete. The sorting of the 
plots is based on the InputNames and OutputNames.

nyquist(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies which 
color, line style, and/or marker should be used to plot each system, as in

nyquist(m1,'r--',m2,'gx')

When sd is specified as a number larger than zero, confidence regions are also 
plotted. These are ellipses in the complex plane and correspond to the region 
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where the true response at the frequency in question is to be found with a 
confidence corresponding to sd standard deviations (of the Gaussian 
distribution). 

If the argument indicating standard deviations is given as in 'sd+5', a 
confidence region is plotted for every 5:th frequency, marking the center point 
by '+'. The default is 'sd+10'.

Note that the frequencies cannot be specified for idfrd objects. For those, the 
plot and response are calculated for the internally stored frequencies. If the 
frequencies w are specified when several models are treated, they will apply to 
all non-idfrd models in the list. If you want different frequencies for different 
models, you should first convert them to idfrd objects using the idfrd 
command.

For time-series models (no input channels), the Nyquist plot is not defined.

Arguments When nyquist is called with a single system and output arguments, 

fr = nyquist(m,w) or [fr,w,covfr] = nyquist(m) 

no plot is drawn on the screen. If m has ny outputs and nu inputs, and w contains 
Nw frequencies, then fr is an ny-by-nu-by-Nw array such that fr(ky,ku,k) gives 
the complex-valued frequency response from input ku to output ky at the 
frequency w(k). For a SISO model, use fr(:) to obtain a vector of the frequency 
response. The uncertainty information covfr is a 5-D array where 
covfr(ky,ku,k,:,:)) is the 2-by-2 covariance matrix of the response from 
input ku to output ky at frequency w(k). The 1,1 element is the variance of the 
real part, the 2,2 element is the variance of the imaginary part, and the 1,2 and 
2,1 elements are the covariance between the real and imaginary parts. 

squeeze(covfr(ky,ku,k,:,:)) gives the covariance matrix of the 
corresponding response.

If m is a time series (no input), fr is returned as the (power) spectrum of the 
outputs, an ny-by-ny-by-Nw array. Hence fr(:,:,k) is the spectrum matrix at 
frequency w(k). The element fr(k1,k2,k) is the cross spectrum between 
outputs k1 and k2 at frequency w(k). When k1 = k2, this is the real-valued 
power spectrum of output k1. The covfr is then the covariance of the spectrum 
fr, so that covfr(k1,k1,k) is the variance of the power spectrum of output k1 
at frequency w(k). No information about the variance of the cross spectra is 
normally given. (That is, covfr(k1,k2,k) = 0 for k1 not equal to k2.)
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If the model m is not a time series, use fr = nyquist(m('n')) to obtain the 
spectrum information of the noise (output disturbance) signals. 

Examples g = spa(data)
m = n4sid(data,3)
nyquist(g,m,3)

See Also bode, etfe, ffplot, idfrd, spa
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4n4sidPurpose Estimate state-space models using subspace method

Syntax m = n4sid(data)
m = n4sid(data,order,'Property1',Value1,...,'PropertyN',ValueN) 

Description The function n4sid estimates models in state-space form and returns them as 
an idss object m. It handles an arbitrary number of input and outputs, 
including the time-series case (no input). The state-space model is in the 
innovations form

m: The resulting model as an idss object. 

If data is continuous-time (frequency-domain) data, a corresponding 
continuous-time state-space model is estimated.

data: An iddata object containing the output-input data. Both time-domain 
and frequency-domain signals are supported. data can also be a frd or idfrd 
frequency-response data object.

order: The desired order of the state-space model. If order is entered as a row 
vector (as in order = [1:10]), preliminary calculations for all the indicated 
orders are carried out. A plot is then given that shows the relative importance 
of the dimension of the state vector. More precisely, the singular values of the 
Hankel matrices of the impulse response for different orders are graphed. You 
are prompted to select the order, based on this plot. The idea is to choose an 
order such that the singular values for higher orders are comparatively small. 
If order = 'best', a model of “best” (default choice) order is computed among 
the orders 1:10. This is the default choice of order.

Estimating the D Matrix
Whether the D matrix is estimated or not is governed by the property nk, which 
is further described below. The default is that D is not estimated. By setting 
the kth entry of nk to 0, the kth column of D (corresponding to the kth input) is 
estimated. To estimate a full D matrix thus, let nk = zeros(1,nu) as in

m = n4sid(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

x t Ts+( ) Ax t( ) Bu t( ) Ke t( )+ +=
y t( ) Cx t( ) Du t( ) e t( )+ +=
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Property Name/Property Value Pairs
The list of property name/property value pairs can contain any idss and 
algorithm properties. See idss and Algorithm Properties.

idss properties that are of particular interest for n4sid are

• nk: For time-domain data, this gives delays from the inputs to the outputs, a 
row vector with the same number of entries as the number of input channels. 
Default is nk = [1 1... 1]. Note that delays of 0 or 1 show up as zeros or 
estimated parameters in the D matrix. Delays larger than 1 mean that a 
special structure of the A, B, and C matrices is used to accommodate the 
delays. This also means that the actual order of the state-space model will be 
larger than order. For continuous-time models estimated from 
continuous-time (frequency-domain) data, the elements of nk are restricted 
to the values 1 and 0.

• CovarianceMatrix (can be abbreviated to 'co'): Setting CovarianceMatrix 
to 'None' blocks all calculations of uncertainty measures. These can take the 
major part of the computation time. Note that, for a 'Free' 
parameterization, the individual matrix elements cannot be associated with 
any variance. (These parameters are not identifiable.) Instead, the resulting 
model m stores a hidden state-space model in canonical form that contains 
covariance information. This is used when the uncertainty of various 
input-output properties is calculated. It can also be retrieved by 
m.ss = 'can'. The actual covariance properties of n4sid estimates are not 
known today. Instead the Cramer-Rao bound is computed and stored as an 
indication of the uncertainty.

• DisturbanceModel: Setting DisturbanceModel to 'None' will deliver a 
model with K = 0. This has no direct effect on the dynamics model other than 
that the default choice of N4Horizon will not involve past outputs.

• InitialState: The initial state is always estimated for better accuracy. 
However, it is returned with m only if InitialState = 'Estimate'.

Algorithm properties that are of special interest are

• Focus: Assumes the values 'Prediction' (default), 'Simulation', 
'Stability', passbands, or any SISO linear filter (given as an LTI or 
idmodel object, or as filter coefficients. See Algorithm Properties.) Setting 
'Focus' to 'Simulation' chooses weights that should give a better 
simulation performance for the model. In particular, a stable model is 
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guaranteed. Selecting a linear filter focuses the fit to the frequency ranges 
that are emphasized by this filter.

• N4Weight: This property determines some weighting matrices used in the 
singular-value decomposition that is a central step in the algorithm. Two 
choices are offered: 'MOESP', corresponding to the MOESP algorithm by 
Verhaegen, and 'CVA', which is the canonical variable algorithm by 
Larimore. The default value is 'N4Weight' = 'Auto', which gives an 
automatic choice between the two options. m.EstimationInfo.N4Weight 
tells you what the actual choice turned out to be.

• N4Horizon: Determines the prediction horizons forward and backward used 
by the algorithm. This is a row vector with three elements: 
N4Horizon = [r sy su], where r is the maximum forward prediction 
horizon. That is, the algorithm uses up to r step-ahead predictors. sy is the 
number of past outputs, and su is the number of past inputs that are used for 
the predictions. See pages 209 and 210 in Ljung (1999) for the exact meaning 
of this. These numbers can have a substantial influence on the quality of the 
resulting model, and there are no simple rules for choosing them. Making 
'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, 
and the value that gives the best (prediction) fit to data is selected. (This 
option cannot be combined with selection of model order.) If the property 
'Trace' is 'On', information about the results is given in the MATLAB 
Command Window.

If you specify only one column in 'N4Horizon', the interpretation is r=sy=su. 
The default choice is 'N4Horizon' = 'Auto', which uses an Akaike 
Information Criterion (AIC) for the selection of sy and su. If 
'DisturbanceModel' = 'None', sy is set to 0. Typing 
m.EstimationInfor.N4Horizon will tell you what the final choices of 
horizons were.

Algorithm The variants of the implemented algorithm are described in Section 10.6 in 
Ljung (1999).

Examples Build a fifth-order model from data with three inputs and two outputs. Try 
several choices of auxiliary orders. Look at the frequency response of the model. 

z = iddata([y1 y2],[ u1 u2 u3]);
m = n4sid(z,5,'n4h',[7:15]','trace','on');
bode(m,'sd',3)
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Estimate a continuous-time model, in a canonical form parameterization, 
focusing on the simulation behavior. Determine the order yourself after seeing 
the plot of singular values.

m = n4sid(m,[1:10],'foc','sim','ssp','can','ts',0)
bode(m)

References vanOverschee, P., and B. DeMoor, Subspace Identification of Linear Systems: 
Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.

Verhaegen, M., “Identification of the deterministic part of MIMO state space 
models,” Automatica, Vol. 30, pp. 61-74, 1994.

Larimore, W.E., “Canonical variate analysis in identification, filtering and 
adaptive control,” In Proc. 29th IEEE Conference on Decision and Control, 
pp. 596-604, Honolulu, 1990.

See Also idss, pem, Algorithm Properties
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4oePurpose Estimate parameters of output-error model

Syntax m = oe(data,orders)
m = oe(data,'nb',nb,'nf',nf,'nk',nk)
m = oe(data,orders,'Property1',Value1,'Property2',Value2,...)

Description oe returns m as an idpoly object with the resulting parameter estimates, 
together with estimated covariances. The parameters of the output-error model 
structure

are estimated using a prediction error method. 

data is an iddata object containing the output-input data. Both time- and 
frequency-domain data are supported. Moreover, data can be an frd or idfrd 
frequency-response data object.

The structure information can either be given explicitly as

(...,'nb',nb,'nf',nf,'nk',nk,...)

or in the argument orders, given as

orders = [nb nf nk]

The parameters nb and nf are the orders of the output-error model and nk is 
the delay. Specifically,

Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the output-error model given in idpoly format. 
See “Polynomial Representation of Transfer Functions” on page 3-11.

y t( ) B q( )
F q( )
------------u t nk–( ) e t( )+=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nf:        F q( ) 1 f+ 1q 1– … fnfq
nf–+ +=
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For multiinput systems, nb, nf, and nk are row vectors with as many entries as 
there are input channels. Entry number i then describes the orders and delays 
associated with the ith input.

Continuous-Time Models
If data is continuous-time (frequency-domain) data, oe estimates a 
continuous-time model with transfer function

The orders of the numerator and denominator are thus determined by nb and 
nf just as in the discrete-time case. However, the delay nk has no meaning and 
should be omitted. For multiinput systems, nb and nf are row vectors with 
obvious interpretation.

Properties
The structure and the estimation algorithm are affected by any property 
name/property value pairs that are set in the input argument list. Useful 
properties are 'Focus', 'InitialState', 'InputDelay', 'SearchDirection', 
'MaxIter', 'Tolerance', 'LimitError', 'FixedParameter', and 'Trace'.

See Algorithm Properties, idpoly, and idmodel for details of these properties 
and their possible values.

oe does not support multioutput models. Use a state-space model for this case 
(see n4sid and pem).

Algorithm oe uses essentially the same algorithm as armax, with modifications to the 
computation of prediction errors and gradients. 

Examples Suppose fast sampled data (Ts = 0.001) is available from a plant with a 
bandwidth of about 500 rad/s. The data is treated as continuous-time 
frequency-domain data, and a model of the type

is estimated.

G s( ) B s( )
F s( )
------------

bnbs nb 1–( ) bnb 1– s nb 2–( ) … b1+ + +

snf fnfs
nf 1–( ) … f1+ + +

---------------------------------------------------------------------------------------------------= =

G s( ) b

s3 f1s2 f2s f3+ + +
------------------------------------------------=



oe

4-156

z = iddata(y,u,0.001);
zf = fft(z);
zf.ts = 0;
m = oe(zf,[1 3],'foc',[0 500])

See Also armax, bj, idpoly, pem
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4pePurpose Compute prediction errors associated with model and data set

Syntax e = pe(m,data)
[e,x0] = pe(m,data,init)

Description data is the output-input data set, given as an iddata object, and m is any 
idmodel object. Both time-domain and frequency-domain data are supported, 
and data can also be an idfrd object.

e is returned as an iddata object, so that e.OutputData contains the prediction 
errors that result when model m is applied to the data.

 The argument init determines how to deal with the initial conditions:

• init = 'e(stimate)' means that the initial state is chosen so that the norm 
of prediction error is minimized. This initial state is returned as x0.

• init = ̀ d(elayexpand)': Same as ‘estimate’, but for a model with nonzero 
InputDelay, the delays are first converted to explicit model delays (using 
inpd2nk) so that they are contained in x0.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0i, where x0i is a column vector of appropriate dimension, uses that 
value as initial state. For multiexperiment data, x0i may be a matrix whose 
columns give different initial states for each experiment. Notice that for a 
continuous-time model m, x0 is the initial state for this model. Any 
modifications of the initial state that sampling might require are 
automatically handled. If m has a non-zero InputDelay, and  you need to 
access the values of the inputs during this delay, you must first apply 
inpd2nk(m). If m is continuous in time, it must first be sampled before 
inpd2nk can be applied.

If init is not specified, the model property m.InitialState is used, so that 
'Estimate', 'Backcast', and 'Auto' set init = 'Estimate', while 
m.InitialState = 'Zero' sets init = 'zero', and 'Fixed' and 'Model' set 
init = 'model'.

e t( ) H 1– q( ) y t( ) G q( )u t( )–[ ]=
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The output argument x0 is the value of the initial state used. If data contains 
several experiments, x0 is a matrix containing the initial states from each 
experiment.

See Also idmodel, resid
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4pemPurpose Estimate parameters of general linear models

Syntax m = pem(data)
m = pem(data,mi)
m = pem(data,mi,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(data,orders)
m = pem(data,'P1D')
m = pem(data,'nx',ssorder)
m = pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = pem(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description pem is the basic estimation command in the toolbox and covers a variety of 
situations. 

data is always an iddata object that contains the input/output data. Both 
time-domain and frequency-domain signals are supported. data can also be an 
frd or idfrd frequency-response data object. Estimation of noise models (K in 
state-space models and A, C, and D in polynomial models) is not supported for 
frequency-domain data.

With Initial Model
mi is any idmodel object, idarx, idpoly, idproc, idss, or idgrey. It could be a 
result of another estimation routine, or constructed and modified by the 
constructors (idarx, idpoly, idss, idgrey, idproc) and set. The properties of 
mi can also be changed by any property name/property value pairs in pem as 
indicated in the syntax.

m is then returned as the best fitting model in the model structure defined by 
mi. The iterative search is initialized at the parameters of the initial/nominal 
model mi. m will be of the same class as mi.

Black-Box State-Space Models
With m = pem(data,n), where n is a positive integer, or m = pem(data,'nx',n), 
a state-space model of order n is estimated.

 
x t Ts+( ) Ax t( ) Bu t( ) Ke t( )+ +=
y t( ) Cx t( ) Du t( ) e t( )+ +=
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If data is continuous-time (frequency-domain) data, a corresponding 
continuous-time state space model is estimated.

The default is that it is estimated in a 'Free' parameterization that can be 
further modified by the properties 'nk', 'DisturbanceModel', and 
'InitialState' (see the reference pages for idss and n4sid). The model is 
initialized by n4sid and then further adjusted by optimizing the prediction 
error fit.

You can choose among several different orders by 

m = pem(data,'nx',[n1,n2,...nN]) 

and you are then prompted for the “best” order. By

m = pem(data,'best')

an automatic choice of order among 1:10 is made.

m = pem(data)

is short for m = pem(data,'best'). To work with other delays, use, for 
example, m = pem(data,'best','nk',[0,...0]).

In this case m is returned as an idss model.

Estimating the D, K, and X0 Matrices
Whether the D matrix is estimated or not is governed by the property nk, which 
is further described below. The default is that D is not estimated. By setting 
the kth entry of nk to 0, the kth column of D (corresponding to the kth input) is 
estimated. To estimate a full D matrix, let nk = zeros(1,nu), as in

m = pem(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

For frequency-domain data, K is always fixed to 0. For time-domain data, K is 
estimated by default. To fix K to 0 in this case, use

m = pem(data,order,'DisturbanceModel','none')

Similarily, X0 is estimated if 'InitialState' is set to 'Estimate', and fixed to 
0 if 'InitialState' is set to 'Zero'.



pem

4-161

Black-Box Multiple-Input-Single-Output Models
The function pem also handles the general multiple-input-single-output 
structure

The orders of this general model are given either as

orders = [na nb nc nd nf nk]

or with (...'na',na,'nb',nb,...) as shown in the syntax. Here na, nb, nc, 
nd, and nf are the orders of the model, and nk is the delay(s). For multiinput 
systems, nb, nf, and nk are row vectors giving the orders and delays of each 
input. (See “Polynomial Representation of Transfer Functions” on page 3-11 for 
exact definitions of the orders.) When the orders are specified with separate 
entries, those not given are taken as zero.

For frequency-domain data, only estimation of B and F is supported. It is 
simpler to use oe in that case.

In this case m is returned as an idpoly object.

Continuous-Time Process Models
Entering for the initial model an acronym for a process model, as in

m = pem(data,'P2UI')

will estimate a continuous-time process model of the indicated type. See the 
reference page for Purpose for details of possible model types and associated 
property name/property value pairs.

In this case m is returned as an idproc model.

Properties In all cases the algorithm is affected by the properties (see Algorithm 
Properties for details):

• Focus, with possible values 'Prediction' (default), 'Simulation', or a 
passband range. 

• MaxIter and Tolerance govern the stopping criteria for the iterative search.

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-------------------unu t nknu–( ) C q( )

D q( )
-------------e t( )+ + +=
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• LimitError deals with how the criterion can be made less sensitive to 
outliers and bad data.

• MaxSize determines the largest matrix ever formed by the algorithm. The 
algorithm goes into for loops to avoid larger matrices, which can be more 
efficient than using virtual memory.

• Trace, with possible values 'Off', 'On', and 'Full', governs the 
information sent to the MATLAB Command Window.

For black-box state-space models, 'N4Weight' and 'N4Horizon' will also affect 
the result, since these models are initialized with an n4sid estimate. See the 
reference page for n4sid.

Typical idmodel properties are (see idmodel properties for more details)

• Ts is the sampling interval. Set 'Ts' = 0 to obtain a continuous-time 
state-space model. For discrete-time models, 'Ts' is automatically set to the 
sampling interval of the data. Note that, in the black-box case, it is usually 
better to first estimate a discrete-time model, and then convert that to 
continuous time using d2c.

• nk is the time delays from the inputs (not applicable to structured state-space 
models). Time delays specified by 'nk' will be included in the model.

• DisturbanceModel determines the parameterization of K for free and 
canonical state-space parameterizations, as well as for idgrey models. It also 
determines whether a noise model should be included for idproc models.

• InitialState: The initial state can have a substantial influence on the 
estimation result for systems with slow responses. It is most pronounced for 
output-error models (K = 0 for state-space and na = nc = nd = 0 for 
input/output models). The default value 'Auto' estimates the influence of 
the initial state and sets the value to 'Estimate', 'Backcast', or 'Zero' 
based on this effect. Possible values of 'InitialState' are 'Auto', 
'Estimate', 'Backcast', 'Zero', and 'Fixed'. See “Initial State” on 
page 3-100. 

Examples Here is an example of a system with three inputs and two outputs. A canonical 
form state-space model of order 5 is sought.

z = iddata([y1 y2],[ u1 u2 u3]);
m = pem(z,5,'ss','can')

Building an ARMAX model for the response to output 2,
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ma = pem(z(:,2,:),'na',2,'nb',[2 3 1],'nc',2,'nk',[1 2 0])

Comparing the models (compare automatically matches the channels using the 
channel names),

compare(z,m,ma)

Algorithm pem uses essentially the same algorithm as armax, with modifications to the 
computation of prediction errors and gradients. 

See Also armax, bj, oe, idss, idpoly, idgrey, idmodel, Algorithm Properties, 
EstimationInfo
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4pexcitPurpose Determine level of excitation of input signals

Syntax Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description Data is an iddata object with time- or frequency-domain signals.

Ped is the degree or order of excitation of the inputs in Data. A row vector of 
integers with as many components as there are inputs in Data. The intuitive 
interpretation of the degree of excitation in an input is the order of a model that 
the input is capable of estimating in an unambiguous way.

Maxnr is the maximum order tested. Default is min(N/3,50), where N is the 
number of input data.

Threshold is the threshold level used to measure which singular values are 
significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).

See Also iddata, advice
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4plot (iddata)Purpose Plot input-output iddata

Syntax plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)

Description data is the output-input data to be graphed, given as an iddata object. A split 
plot is obtained with the outputs on top and the inputs at the bottom.

One plot for each I/O channel combination is produced. Pressing the Enter key 
advances the plot. Typing Ctrl+C aborts the plotting in an orderly fashion.

To plot a specific interval, use plot(data(200:300)). To plot specific 
input/output channels, use plot(data(:,ky,ku)), consistent with the 
subreferencing of iddata objects (see iddata).

If data.intersample = 'zoh', the input is piecewise constant between 
sampling points, and it is then graphed accordingly.

To plot several iddata sets d1,...,dN, use plot(d1,...,dN). I/O channels 
with the same experiment name, input name, and output name are always 
plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can be 
specified

plot(d1,'y:*',d2,'b')

just as in the regular plot command.

See Also iddata
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4plot (idmodel)Purpose Plot idmodel properties using LTI viewer in Control Systems Toolbox

Syntax See view.
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4 polydataPurpose Convert model to input-output polynomials

Syntax [A,B,C,D,F] = polydata(m)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(m)

Description This is essentially the inverse of the idpoly constructor. It returns the 
polynomials of the general model

as contained in the model m. 

dA, dB, etc. are the standard deviations of A, B, etc.

m can be any single-output idmodel, that is, not just idpoly. For multioutput 
models you can use [A,B,C,D,F] = polydata(m(ky,:)) to obtain the 
polynomials for the kyth output.

See Also idmodel, idpoly, tfdata

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
-------------------unu t nknu–( ) C q( )

D q( )
-------------e t( )+ + +=
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4predictPurpose Predict output k steps ahead

Syntax yp = predict(m,data)
[yp,x0p,mpred] = predict(m,data,k,'InitialState',init)

Description data is the output-input data as an iddata object, and m is any idmodel object 
(idpoly, idproc, idss, idgrey, or idarx). predict is meaningful only for 
time-domain data.

The argument k indicates that the k step-ahead prediction of y according to the 
model m is computed. In the calculation of yp(t), the model can use outputs up 
to time 

and inputs up to the current time t. The default value of k is 1. 

The output yp is an iddata object containing the predicted values as 
OutputData.

x0p is the used (estimated) initial state vector. For multiexperiment data, x0p 
is a matrix, whose columns contain the initial states for each experiment. 

The output argument mpred contains the k step-ahead predictor. This is given 
as a cell array, whose kth entry is an idpoly model for the predictor of output 
number k. Note that these predictor models have as input both input and 
output signals in the data set. The channel names indicate how the predictor 
model and the data fit together. 

init determines how to deal with the initial state:

• init ='e(stimate)': The initial state is set to a value that minimizes the 
norm of the prediction error associated with the model and the data.

• init = ̀ d(elayexpand)': Same as ‘estimate’, but for a model with nonzero 
InputDelay, the delays are first converted to explicit model delays (using 
inpd2nk) so that they are contained in x0p.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0, where x0 is a column vector of appropriate dimension, uses that 
value as initial state. For multiexperiment data, x0 can be a matrix whose 
columns give different initial states for each experiment. Notice that for a 

t k– :y s( ) s t= k t k– 1–, …,–,
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continuous-time model m, x0 is the initial state for this model. Any 
modifications of the initial state that sampling might require are 
automatically handled. If m has a non-zero InputDelay, and  you need to 
access the values of the inputs during this delay, you must first apply 
inpd2nk(m). When m is a continuous-time model, it must first be sampled 
before inpd2nk can be applied.

If init is not specified, the model property m.InitialState is used, so that 
'Estimate', 'Backcast', and 'Auto' set init = 'Estimate', while 
m.InitialState = 'Zero' sets init = 'zero', and 'Model' and 'Fixed' set 
init = 'model'.

An important use of predict is to evaluate a model’s properties in the 
mid-frequency range. Simulation with sim (which conceptually corresponds to 
k = inf) can lead to levels that drift apart, since the low-frequency behavior is 
emphasized. One step-ahead prediction is not a powerful test of the model’s 
properties, since the high-frequency behavior is stressed. The trivial predictor 

 can give good predictions in case the sampling of the data is 
fast. 

Another important use of predict is to evaluate time-series models. The 
natural way of studying a time-series model’s ability to reproduce observations 
is to compare its k step-ahead predictions with actual data. 

Note that for output-error models, there is no difference between the k 
step-ahead predictions and the simulated output, since, by definition, 
output-error models only use past inputs to predict future outputs. 

Algorithm The model is evaluated in state-space form, and the state equations are 
simulated k steps ahead with initial value , where  is 
the Kalman filter state estimate. 

Examples Simulate a time series, estimate a model based on the first half of the data, and 
evaluate the four step-ahead predictions on the second half. 

m0 = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
y = sim(m0,e);
m = armax(y(1:200),[1 2]);
yp = predict(m,y,4);
plot(y(201:400),yp(201:400))

ŷ t( ) y t 1–( )=

x t k–( ) x̂ t k–( )= x̂ t k–( )
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Note that the last two commands are also achieved by

compare(y,m,4,201:400);

See Also compare, sim, pe
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4presentPurpose Display information in idmodel model, including uncertainty

Syntax present(m)

Description The present function displays the model m, together with the estimated 
standard deviations of the parameters, loss function, and Akaike’s Final 
Prediction Error (FPE) Criterion (which essentially equals the AIC). It also 
displays information about how m was created.

present thus gives more detailed information about the model than the 
standard display function.
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4pzmapPurpose Plot zeros and poles with confidence regions

Syntax pzmap(m)
pzmap(m,'sd',sd)
pzmap(m1,m2,m3,...)
pzmap(m1,'PlotStyle1',m2,'PlotStyle2',...,'sd',sd)
pzmap(m1,m2,m3,..,'sd',sd,'mode',mode,'axis',axis)

Description m is any idmodel object: idarx, idgrey, idss, idproc, or idpoly.

The zeros and poles of m are graphed, with o denoting zeros and x denoting 
poles. Poles and zeros at infinity are ignored. For discrete-time models, zeros 
and poles at the origin are also ignored.

The Property/Value pairs `sd'/sd, `mode'/mode and `axis'/axis can 
appear in any order. They are explained below.

If sd has a value larger than zero, confidence regions around the poles and 
zeros are also graphed. The regions corresponding to sd standard deviations 
are marked. The default value is sd = 0. Note that the confidence regions 
might sometimes stretch outside the plot, but they are always symmetric 
around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is 
also drawn. For continuous-time models, the real and imaginary axes are 
drawn.

When mi contains information about several different input/output channels, 
you have the following options:

mode = 'sub' splits the screen into several plots, one for each input/output 
channel. These are based on the InputName and OutputName properties 
associated with the different models.

mode = 'same' gives all plots in the same diagram. Pressing the Enter key 
advances the plots. 

mode = 'sep' erases the previous plot before the next channel pair is treated.

The default value is mode = 'sub'.

axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = s is the same 
as
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axis = [-s s -s s]

You can select the colors associated with the different models by using the 
argument PlotStyle. Use PlotStyle = 'b', 'g', etc. Markers and line styles 
are not used.

The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v.

Then,

• pzmap(m) plots the zeros and poles of the transfer function G.

• pzmap(m('n')) plots the zeros and poles of the transfer function H (ny inputs 
and ny outputs). The input channels have names e@yname, where yname is 
the name of the corresponding output.

• If m is a time series, that is nu = 0, pzmap(m) plots the zeros and poles of the 
transfer function H.

• pzmap(noisecnv(m)) plots the zeros and poles of the transfer function [G H] 
(nu+ny inputs and ny outputs). The noise input channels have names 
e@yname, where yname is the name of the corresponding output.

• pzmap(noisecnv(m,'norm')) plots the zeros and poles of the transfer 
function [G HL] (nu+ny inputs and ny outputs). The noise input channels 
have names v@yname, where yname is the name of the corresponding output.

Examples mbj = bj(data,[2 2 1 1 1]);
mar = armax(data,[2 2 2 1]);
pzmap(mbj,mar,'sd',3)

shows all zeros and poles of two models along with the confidence regions 
corresponding to three standard deviations.

Λ

y Gu He+=
cov e( ) Λ LL′= =

Λ

y Gu HLv+=
cov v( ) I=
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See Also idmodel, zpkdata
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4rarmaxPurpose Estimate recursively parameters of ARMAX or ARMA model

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the delay. 
Specifically, 

See “Polynomial Representation of Transfer Functions” on page 3-11 for more 
information.

If z represents a time series y and nn = [na nc], rarmax estimates the 
parameters of an ARMA model for y.

Only single-input, single-output models are handled by rarmax. Use rpem for 
the multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm 
contains the parameters associated with time k; that is, they are based on the 
data in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=

na:        A q( ) 1 a1q 1– … anaq na–+ + +=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nc:        C q( ) 1 c1q 1– … cncq nc–+ + +=

A q( )y t( ) C q( )e t( )=
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yhat is the predicted value of the output, according to the current model; that 
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These 
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row 
vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend on the chosen model orders. The normal choice of 
phi0 and psi0 is to use the outputs from a previous call to rarmax with the 
same model orders. (This call could be a dummy call with default input 
arguments.) The default values of phi0 and psi0 are all zeros. 

Note that the function requires that the delay nk be larger than 0. If you want 
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47) through 
(11.49) of Ljung (1999) is implemented. See “Recursive Parameter Estimation” 
on page 3-86 for more information.

Examples Compute and plot, as functions of time, the four parameters in a second-order 
ARMA model of a time series given in the vector y. The forgetting factor 
algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)
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4rarxPurpose Estimate recursively parameters of ARX or AR model

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description The parameters of the ARX model structure

are estimated using different variants of the recursive least squares method.

The input-output data is contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay. 
Specifically,

See (Equation 3-13) in Chapter 3, “Tutorial,” for more information.

If z is a time series y and nn = na, rarx estimates the parameters of an AR 
model for y.

Models with several inputs

are handled by allowing u to contain each input as a column vector,

u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays 
associated with each input.

Only single-output models are handled by rarx.

A q( )y t( ) B q( )u t nk–( ) e t( )+=

na:        A q( ) 1 a1q 1– … anaq na–+ + +=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

A q( )y t( ) e t( )=

A q( )y t( ) B1 q( )u1 t nk1–( ) …Bnuunu t nknu–( ) e t( )+ +=
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The estimated parameters are returned in the matrix thm. The kth row of thm 
contains the parameters associated with time k; that is, they are based on the 
data in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

In the case of a multiinput model, all the b parameters associated with input 
number 1 are given first, and then all the b parameters associated with input 
number 2, and so on.

yhat is the predicted value of the output, according to the current model; that 
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These 
are described in “Recursive Parameter Estimation” on page 3-86. The options 
are as follows:

• With adm = 'ff' and adg = lam the forgetting factor algorithm 
(Equation 3-65abd) and (Equation 3-67) is obtained with forgetting factor 
= lam. This is what is often referred to as recursive least squares (RLS). In 

this case the matrix P has the following interpretation: /2 ∗ P is 
approximately equal to the covariance matrix of the estimated parameters. 
Here  is the variance of the innovations (the true prediction errors e(t) in 
(Equation 3-62).

• With adm ='ug' and adg = gam, the unnormalized gradient algorithm 
(Equation 3-65abc) and (Equation 3-68) is obtained with gain gamma = gam. 
This algorithm is commonly known as normalized least mean squares 
(LMS).

• Similarly, adm ='ng' and adg = gam give the normalized gradient or 
normalized least mean squares (NLMS) algorithm (Equation 3-65abc) and 
(Equation 3-69). In these cases, P is not defined or applicable.

• With adm ='kf' and adg = R1, the Kalman filter based algorithm 
(Equation 3-65) is obtained with R2= 1 and R1 = R1. If the variance of the 
innovations e(t) is not unity but ; then  ∗ P is the covariance matrix of 
the parameter estimates, while  = R1 /  is the covariance matrix of the 
parameter changes in (Equation 3-63). 

• The input argument th0 contains the initial value of the parameters, a row 
vector consistent with the rows of thm. The default value of th0 is all zeros.

λ
R2

R2

R2 R2
R1 R2



rarx

4-179

• The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. The default value of P0 is 104 
times the identity matrix.

• The arguments phi0 and phi contain initial and final values, respectively, of 
the data vector.

Then, if 

z = [y(1),u(1); ... ;y(N),u(N)]

you have phi0 =  and phi = . The default value of phi0 is all zeros. 
For online use of rarx, use phi0, th0, and P0 as the previous outputs phi, thm 
(last row), and P.

Note that the function requires that the delay nk be larger than 0. If you want 
nk = 0, shift the input sequence appropriately and use nk = 1. See nkshift.

Examples Adaptive noise canceling: The signal y contains a component that has its origin 
in a known signal r. Remove this component by estimating, recursively, the 
system that relates r to y using a sixth-order FIR model together with the 
NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If the above application is a true online one, so that you want to plot the best 
estimate of the signal y - noise at the same time as the data y and u become 
available, proceed as follows.

phi = zeros(6,1); P=1000∗eye(6);
th = zeros(1,6); axis([0 100 -2 2]);
plot(0,0,'∗'), hold on
% The loop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'∗')

ϕ t( ) y t 1–( ) … y t na–( ) u t 1–( ) …u t nb– nk– 1+( ), , , ,[ ]=

ϕ 1( ) ϕ N( )
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time = time +Dt
end

This example uses a forgetting factor algorithm with a forgetting factor of 0.98. 
readAD represents an M-file that reads the value of an A/D converter at the 
indicated time instant. 
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4rbjPurpose Estimate recursively parameters of Box-Jenkins model

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ... rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Box-Jenkins model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and nk is the 
delay. Specifically,

See “Polynomial Representation of Transfer Functions” on page 3-11 for more 
information.

Only single-input, single-output models are handled by rbj. Use rpem for the 
multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm 
contains the parameters associated with time k; that is, they are based on the 
data in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

y t( ) B q( )
F q( )
------------u t nk–( ) C q( )

D q( )
-------------e t( )+=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nc:        C q( ) 1 c1q 1– … cncq nc–+ + +=

nd:        D q( ) 1 d1q 1– … dndq nd–+ + +=

nf:        F q( ) 1 f1q 1– … fnfq
nf–+ + +=



rbj

4-182

yhat is the predicted value of the output, according to the current model; that 
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These 
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row 
vector consistent with the rows of thm. The default value of th0 is all zeros. 

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend on the chosen model orders. The normal choice of 
phi0 and psi0 is to use the outputs from a previous call to rbj with the same 
model orders. (This call could be a dummy call with default input arguments.) 
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want 
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1900) is 
implemented. See also “Recursive Parameter Estimation” on page 3-86.
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4realdataPurpose Determine whether iddata is based on real-valued signals

Syntax realdata(data)

Description realdata returns 1 if 

• data contains only real-valued signals.

• data contains frequency-domain signals, obtained by Fourier transformation 
of real-valued signals.

Otherwise realdata returns 0.

Notice the difference with isreal:

load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1
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4resamplePurpose Resample data by interpolation and decimation

Syntax datar = resample(data,P,Q)
datar = resample(data,P,Q,,filter_order)

Description data: The data to be resampled, given as an iddata object

datar: The resampled data returned as an iddata object

P, Q: Integers that determine the resampling factor. The new sampling interval 
will be Q/P times the original one, so resample(z,1,Q) means decimation with 
a factor Q.

filter_order: Determines the order of the presampling filters used before 
interpolation and decimation. Default is 10.

Algorithm If the Signal Processing Toolbox is available, the resampling is achieved by 
calls to the resample function in that toolbox. The intersample character of the 
input, as described by data.InterSample, is taken into account.

Otherwise, use the function datar = idresamp(data,R), where R=Q/P. Then 
the data is interpolated by a factor P and then decimated by a factor Q. The 
interpolation and decimation are preceded by prefiltering, and follow the same 
algorithms as in the routines interp and decimate in the Signal Processing 
Toolbox.

Examples Resample by increasing the sampling rate by a factor of 1.5 and compare the 
signals.

plot(u)
ur = resample(u,3,2);
plot(u,ur)
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4residPurpose Compute and test model residuals (prediction errors)

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

Description data contains the output-input data as an iddata object. Both time-domain 
and frequency-domain data are supported. data can also be an idfrd object.

m is the model to be evaluated on the given data set. It is any idmodel object.

In all cases the residuals e associated with the data and the model are 
computed. This is done as in the command pe with a default choice of init.

When called without output arguments, resid produces a plot. The plot can be 
of three kinds depending on the argument Type:

• Type = 'Corr' (only available for time-domain data): The autocorrelation 
function of e and the cross correlation between e and the input(s) u are 
computed and displayed. The 99% confidence intervals for these values are 
also computed and shown as a yellow region. The computation of the 
confidence region is done assuming e to be white and independent of u. The 
functions are displayed up to lag M, which is 25 by default.

• Type = 'ir': The impulse response (up to lag M, which is 25 by default) from 
the input to the residuals is plotted with a 99% confidence region around zero 
marked as a yellow area. Negative lags up to M/4 are also included to 
investigate feedback effects. (The result is the same as 
impulse(e,'sd',2.58,'fill',M).)

• Type = 'fr': The frequency response from the input to the residuals (based 
on a high-order FIR model) is shown as a Bode plot. A 99% confidence region 
around zero is also marked as a yellow area.

The default for time-domain data is Type = 'Corr'. For frequency-domain 
data, the default is Type = 'fr'.

With an output argument, no plot is produced, and e is returned with the 
residuals (prediction errors) associated with the model and the data. It is an 
iddata object with the residuals as outputs and the input in data as inputs. 
That means that e can be directly used to build model error models, that is, 
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models that describe the dynamics from the input to the residuals (which 
should be negligible if m is a good description of the system).

See “Model Structure Selection and Validation” on page 3-70 for more 
information.

Examples Here are some typical model validation commands.

e = resid(m,data);
plot(e)
compare(data,m);

To compute a model error model, that is, a model to input to the residuals to 
see if any essential unmodeled dynamics are left, do the following:

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,fill')

References Ljung (1999), Section 16.6.

See Also compare, idgrey, idarx, idpoly, idproc, idss, pem
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4roePurpose Estimate output-error models (IIR-filters) recursively

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the output-error model structure

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the delay. 
Specifically,

See “Polynomial Representation of Transfer Functions” on page 3-11 for more 
information.

Only single-input, single-output models are handled by roe. Use rpem for the 
multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm 
contains the parameters associated with time k; that is, they are based on the 
data in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]

yhat is the predicted value of the output, according to the current model; that 
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These 
are described under rarx.

y t( ) B q( )
F q( )
------------u t nk–( ) e t( )+=

nb:        B q( ) b1 b+ 2q 1– … bnbq nb– 1++ +=

nf:        F q( ) 1 f1q 1– … fnfq
nf–+ + +=
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The input argument th0 contains the initial value of the parameters, a row 
vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend on the chosen model orders. The normal choice of 
phi0 and psi0 is to use the outputs from a previous call to roe with the same 
model orders. (This call could be a dummy call with default input arguments.) 
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want 
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999) is 
implemented. See also “Recursive Parameter Estimation” on page 3-86. 

See Also oe, rarx, rbj, rplr, rpem, nkshift
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4rpemPurpose Estimate general input-output models using recursive prediction error method

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. (In the multiinput case, u 
contains one column for each input.) nn is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For 
multiinput systems, nb, nf, and nk are row vectors giving the orders and delays 
of each input. See “Polynomial Representation of Transfer Functions” on 
page 3-11 for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm 
contains the parameters associated with time k; that is, they are based on the 
data in the rows up to and including row k in z. Each row of thm contains the 
estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
  c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiinput systems, the B part in the above expression is repeated for each 
input before the C part begins, and the F part is also repeated for each input. 
This is the same ordering as in m.par.

yhat is the predicted value of the output, according to the current model; that 
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These 
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row 
vector consistent with the rows of thm. The default value of th0 is all zeros. 

A q( )y t( )
B1 q( )
F1 q( )
---------------u1 t nk1–( ) …

Bnu q( )
Fnu q( )
------------------- unu t nknu–( ) C q( )

D q( )
-------------e t( )+ + +=
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The arguments P0 and P are the initial and final values, respectively, of the 
scaled covariance matrix of the parameters. See rarx. The default value of P0 
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain 
initial and final values of the data vector and the gradient vector, respectively. 
The sizes of these depend on the chosen model orders. The normal choice of 
phi0 and psi0 is to use the outputs from a previous call to rpem with the same 
model orders. (This call could be a dummy call with default input arguments.) 
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want 
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999) is 
implemented. See also “Recursive Parameter Estimation” on page 3-86. 

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, 
Box-Jenkins, and output-error models, it is more efficient to use rarx, rarmax, 
rbj, and roe.

See Also pem, rarmax, rarx, rbj, roe, rplr, nkshift
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4rplrPurpose Estimate general input-output models using recursive pseudolinear regression 
method

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax. See 
rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation. See 
Section 11.5 in Ljung (1999). Several of the special cases are well-known 
algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr gives the 
extended least squares (ELS) method. When applied to the output-error 
structure (nn = [0 nb 0 0 nf nk]), the method is known as HARF in the 
adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA model is 
estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

See Also pem, rarmax, rarx, rbj, roe, rpem 
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4segmentPurpose Segment data and estimate models for each segment

Syntax segm = segment(z,nn) 
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA type,

assuming that the model parameters are piecewise constant over time. It 
results in a model that has split the data record into segments over which the 
model remains constant. The function models signals and systems that might 
undergo abrupt changes.

The input-output data is contained in z, which is either an iddata object or a 
matrix z = [y u] where y and u are column vectors. If the system has several 
inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials. See 
“Polynomial Representation of Transfer Functions” on page 3-11. Moreover, nk 
is the delay. If the model has several inputs, nb and nk are row vectors, giving 
the orders and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

The output argument segm is a matrix, whose k row contains the parameters 
corresponding to time k. This is analogous to the output argument thm in rarx 
and rarmax. The output argument thm of segment contains the corresponding 
model parameters that have not yet been segmented. That is, they are not 

A q( )y t( ) B q( )u t nk–( ) C q( )e t( )+=
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piecewise constant, and therefore correspond to the outputs of the functions 
rarmax and rarx. In fact, segment is an alternative to these two algorithms, 
and has a better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction errors of the 
segmented model. It is a measure of how successful the segmentation has been. 

The input argument R2 is the assumed variance of the innovations e(t) in the 
model. The default value of R2, R2 = [], is that it is estimated. Then the output 
argument R2e is a vector whose kth element contains the estimate of R2 at time 
k.

The argument q is the probability that the model undergoes at an abrupt 
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they occur. 
The default value is the identity matrix with dimension equal to the number of 
estimated parameters.

M is the number of parallel models used in the algorithm (see below). Its default 
value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the initial 
covariance matrix of the parameters. The default is 10 times the identity 
matrix.

ll is the guaranteed life of each of the models. That is, any created candidate 
model is not abolished until after at least ll time steps. The default is ll = 1. 
Mu is a forgetting parameter that is used in the scheme that estimates R2. The 
default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust to 
have a reasonable guess of R2 than to estimate it. Typically, you need to try 
different values of R2 and evaluate the results. (See the example below.) 
sqrt(R2) corresponds to a change in the value y(t) that is normal, giving no 
indication that the system or the input might have changed.
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Algorithm The algorithm is based on M parallel models, each recursively estimated by an 
algorithm of Kalman filter type. Each is updated independently, and its 
posterior probability is computed. The time-varying estimate thm is formed by 
weighting together the M different models with weights equal to their posterior 
probability. At each time step the model (among those that have lived at least 
11 samples) that has the lowest posterior probability is abolished. A new model 
is started, assuming that the system parameters have jumped, with probability 
q, a random jump from the most likely among the models. The covariance 
matrix of the parameter change is set to R1. 

After all the data are examined, the surviving model with the highest posterior 
probability is tracked back and the time instances where it jumped are marked. 
This defines the different segments of the data. (If no models had been 
abolished in the algorithm, this would have been the maximum likelihood 
estimates of the jump instances.) The segmented model segm is then formed by 
smoothing the parameter estimate, assuming that the jump instances are 
correct. In other words, the last estimate over a segment is chosen to represent 
the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant levels. 
Then use a very simple model y(t) = b1 * 1, where 1 is a fake input and  
describes the piecewise constant level of the signal y(t) (which is simulated as 
a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(size(y))],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels are 
created as R2 decreases. 

b1
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4selstrucPurpose Select  model order (structure)

Syntax nn = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description selstruc is a function to help choose a model structure (order) from the 
information contained in the matrix v obtained as the output from arxstruc or 
ivstruc. 

The default value of c is 'plot'. The plot shows the percentage of the output 
variance that is not explained by the model as a function of the number of 
parameters used. Each value shows the best fit for that number of parameters. 
By clicking in the plot you can examine which orders are of interest. When you 
click 'Select', the variable nn is returned in the workspace as the optimal 
model structure for your choice of number of parameters. Several choices can 
be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes 
Akaike’s Information Criterion (AIC), 

where V is the loss function, d is the total number of parameters in the 
structure in question, and N is the number of data points used for the 
estimation. See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s Minimum 
Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

is selected.

The output argument vmod has the same format as v, but it contains the 
logarithms of the accordingly modified criteria.

Vmod V 1 2d
N
-------+⎝ ⎠

⎛ ⎞=

Vmod V 1 d N( )log
N

----------------------+⎝ ⎠
⎛ ⎞=

Vmod V 1 cd
N
------+⎝ ⎠

⎛ ⎞=
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Examples V = arxstruc(data(1:200),data(201:400),struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)
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4setPurpose Set properties of models and iddata sets

Syntax set(m,'Property',Value)
set(m,'Property1',Value1,...'PropertyN',ValueN)
set(m,'Property')
set(m)

Description set is used to set or modify the properties of any of the objects in the toolbox 
(iddata, idmodel, idgrey, idarx, idpoly, idss). See the corresponding 
reference pages for a complete list of properties.

set(m,'Property',Value) assigns the value Value to the property of the 
object m specified by the string 'Property'. This string can be the full property 
name (for example, 'SSParameterization') or any unambiguous 
case-insensitive abbreviation (for example, 'ss').

set(m,'Property1',Value1,...'PropertyN',ValueN) sets multiple 
properties with a single statement. In certain cases this might be necessary, 
since the model m must, for example, have state-space matrices of consistent 
dimensions after each set statement.

set(m,'Property') displays admissible values for the property specified by 
'Property'.

set(m) displays all assignable values of m and their admissible values.

The same result is also obtained by subassignment.

m.Property = Value
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4setstrucPurpose Set matrix structure for idss objects

Syntax setstruc(M,As,Bs,Cs,Ds.Ks,X0s)
setstruc(M,Mods)

Description setstruc(M,As,Bs,Cs,Ds.Ks,X0s) 

is the same as

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)

Use empty matrices for structure matrices that should not be changed. You can 
omit trailing arguments.

In the alternative syntax, Mods is a structure with fieldnames As, Bs, etc., with 
the corresponding values of the fields.

See Also idss
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4setpnamePurpose Set mnemonic parameter names for black-box model structures

Syntax model = setpname(model)

Description model is an idmodel object of idarx, idpoly, idproc, or idss type. The returned 
model has the 'PName' property set to a cell array of strings that correspond to 
the symbols used in this manual to describe the parameters.

For single-input idpoly models, the parameters are called 
'a1', 'a2', ...,'fn', as defined in “Polynomial Representation of Transfer 
Functions” on page 3-11.

For multiinput idpoly models, the b and f parameters have the output/input 
channel number in parentheses, as in 'b1(1,2)', 'f3(1,2)', etc.

For idarx models, the parameter names are as in '-A(ky,ku)' for the negative 
value of the ky-ku entry of the matrix in (Equation 3-50) and similarly for the 
B parameters.

For idss models, the parameters are named for the matrix entries they 
represent, such as 'A(4,5)', 'K(2,3)', etc.

For idproc models, the parameter names are as described under idproc.

This function is particularly useful when certain parameters are to be fixed. 
See the property FixedParameter under Algorithm Properties.
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4simPurpose Simulate linear models  with confidence regions

Syntax y = sim(m,u)
y = sim(m,u,'noise')
[y, ysd] = sim(m,u,'InitialState',init)

Description m is an arbitrary idmodel object.

u is an iddata object, containing inputs only. (Any outputs are ignored). Both 
time-domain and frequency-domain signals are supported. The number of 
input channels in u must either be equal to the number of inputs of the model 
m or equal to the sum of the number of inputs and noise sources (number of 
outputs). In the latter case the last inputs in u are regarded as noise sources 
and a noise-corrupted simulation is obtained. The noise is scaled according to 
the property m.NoiseVariance in m. To obtain the right noise level according to 
the model, the noise inputs should be white noise with zero mean and unit 
covariance matrix. A simpler way of obtaining a noise-corrupted simulation 
with Gaussian noise is to add the argument `noise'. If no noise sources are 
contained in u, a noise-free simulation is obtained. sim applies both to 
time-domain and frequency-domain iddata objects, but no standard 
deviations are obtained for frequency-domain signals.

sim returns y, containing the simulated output, as an iddata object.

init gives access to the initial states:

• init = 'm' (default) uses the internally stored initial state of model m.

• init = 'z' uses zero initial state.

• init = x0, where x0 is a column vector of appropriate length, uses this value 
as the initial state. For multi-experiment inputs, x0 has as many columns as 
there are experiments to allow for different initial conditions. Notice that for 
a continuous-time model m, x0 is the initial state for this model. Any 
modifications of the initial state that sampling might require are 
automatically handled. If m has a non-zero InputDelay, and  you need to 
access the values of the inputs during this delay, you must first apply 
inpd2nk(m). If m is a continuous-time model, it must first be sampled before 
inpd2nk can be applied.

The second output argument ysd is the standard deviation of the simulated 
output. This is not available for frequency-domain data.
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u can also be given as a matrix with the number of columns being either the 
number of inputs in m or the sum of the number of inputs and outputs. Then y 
and ysd are returned as matrices. Continuous-time models, however, require u 
to be given as iddata. 

If m is a continuous-time model, it is first converted to discrete time with the 
sampling interval given by ue, taking into account the intersample behavior of 
the input (ue.InterSample). See “Discrete- and Continuous-Time Models” on 
page 3-68. 

Examples Simulate a given system m0 (for example, created by idpoly).

e = iddata([],randn(500,1));
u = iddata([],idinput(500,'prbs'));
y = sim(m0,[u e]);
z = [y u]; % An iddata object with y as output and u as input.

The same result is obtained by

u = iddata([],idinput(500,'prbs'));
y = sim(m0,u,'noise');
z = [ y u];

or

u = idinput(500,'prbs');
y = sim(m0,u,'noise');
z = iddata(y,u);

Validate a model by comparing a measured output y with one simulated using 
an estimated model m.

yh = sim(m,u);
plot(y,yh)

See Also iddata, idpoly, idarx, idss, idgrey, simsd
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4simsdPurpose Simulate models with uncertainty using Monte Carlo method

Syntax simsd(m,u)
simsd(m,u,N,'noise',Ky)
[y,ysd] = simsd(m,u)

Description u is an iddata object containing the inputs. m is a model given as any idmodel 
object. N random models are created according to the covariance information 
given in m. The responses of each of these models to the input u are computed 
and graphed in the same diagram. If the argument 'noise' is included, noise 
is added to the simulation in accordance with the noise model of m and its own 
uncertainty. Ky denotes the output numbers to be plotted. (The default is all).

The default value is N=10.

  With output arguments

[y,ysd] = simsd(m,u)

No plots are produced, but y is returned as a cell array with the simulated 
outputs, and ysd is the estimated standard deviation of y, based on the N 
different simulations. If u is an iddata object, so are the contents of the cells of 
y and ysd; otherwise, they are returned as vectors/matrices. In the iddata case, 

plot(y{:})

thus plots all the responses.

sim and simsd have similar syntaxes. Note that simsd computes the standard 
deviation by Monte Carlo simulation, while sim uses differential 
approximations (the Gauss approximation formula). They might give different 
results.

Examples Plot the step response of the model m and evaluate how it varies in view of the 
model’s uncertainty.

step1 = [zeros(5,1); ones(20,1)];
simsd(m,step1)

See Also sim



size

4-203

4sizePurpose Dimensions of iddata, idmodel, and idfrd objects

Syntax d = size(m)
[ny,nu,Npar,Nx] = size(model)
[N, ny, nu, Nexp] = size(data)
ny = size(data,2)
ny = size(data,'ny')
size(model)
size(idfrd_object)

Description size describes the dimensions of  iddata, idmodel, and idfrd objects.

iddata
For iddata objects, the sizes returned are, in this order,

• N = the length of the data record. For multiple-experiment data, N is a row 
vector with as many entries as there are experiments.

• ny = the number of output channels.

• ny = the number of input channels.

• Ne = the number of experiments.

To access just one of these sizes, use size(data,k) for the kth dimension or 
size(data,'N'), size(data,'ny'), etc.

When called with one output argument, d = size(data) returns

• d = [N ny nu] if the number of experiments is 1.

• d = [sum(N) ny nu Ne] if the number of experiments is Ne > 1.

idmodel
For idmodel objects the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Npar = the length of the ParameterVector (number of estimated 
parameters).

• Nx = the number of states for idss and idgrey models.
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In this case the individual dimensions are obtained by size(mod,2), 
size(mod,'Npar'), etc.

When size is called with one output argument, d = size(mod), d is given by

 [ny nu Npar]

idfrd
For idfrd models, the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Nf = the number of frequencies.

• Ns = the number of spectrum channels.

In this case the individual dimensions are obtained by size(mod,2), 
size(mod,'Nf'), etc.

When size is called with one output argument, d = size(fre), d is given by

[ny nu Nf Ns]

When size is called with no output arguments, in any of these cases, the 
information is displayed in the MATLAB Command Window.
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4spaPurpose Estimate frequency response and spectrum using spectral analysis

Syntax g = spa(data)
g = spa(data,M,w,maxsize)
[g,phi,spe] = spa(data)

Description spa estimates the transfer function g and the noise spectrum  of the general 
linear model

where  is the spectrum of .

data contains the output-input data as an iddata object. The data can be 
complex valued. data can be both time domain and frequency domain. data can 
also be an idfrd object.

g is returned as an idfrd object (see idfrd) with the estimate of at the 
frequencies  specified by row vector w. The default value of w is

w = [1:128]/128∗pi/Ts

Here Ts is the sampling interval of data.

g also includes information about the spectrum estimate of at the same 
frequencies. Both outputs are returned with estimated covariances, included in 
g. See idfrd.

M is the length of the lag window used in the calculations. The default value is

M = min(30,length(data)/10)

Changing the value of M controls the frequency resolution of the estimate. The 
resolution corresponding to M is approximately /M rad/sampling interval. The 
value of M exchanges bias for variance in the spectral estimate. As M is 
increased, the estimated functions show more detail, but are more corrupted by 
noise. The sharper peaks a true frequency function has, the higher M it needs. 
See etfe as an alternative for narrowband signals and systems. The function 
spafdr allows the frequency resolution to depend on the frequency. See also 
“Estimating Spectra and Frequency Functions” on page 3-15. 

maxsize controls the memory-speed tradeoff (see Algorithm Properties).
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For time series, where data contains no input channels, g is returned with the 
estimated output spectrum and its estimated standard deviation.

When spa is called with two or three output arguments,

• g is returned as an idfrd model with just the estimated frequency response 
from input to output and its uncertainty.

• phi is returned as an idfrd model, containing just the spectrum data for the 
output spectrum  and its uncertainty.

• spe is returned as an idfrd model containing spectrum data for all 
output-input channels in data. That is, if z = [data.OutputData, 
data.InputData], spe contains as spectrum data the matrix-valued power 
spectrum of z.

 

Here win(m) is weight at lag m of an M-size Hamming window and W is the 
frequency value i rad/s. Note that ' denotes complex-conjugate transpose.

The normalization of the spectrum differs from the one used by spectrum in the 
Signal Processing Toolbox. See “Spectrum Normalization and the Sampling 
Interval” on page 3-107 for a more precise definition.

Examples With default frequencies,

g = spa(z);
bode(g)

With logarithmically spaced frequencies,

w = logspace(-2,pi,128);
g= spa(z,[],w); % (empty matrix gives default)
bode(g,'sd',3)
bode(g('noise'),'sd',3) % The noise spectrum with confidence 
interval of 3 standard deviations.

Φv ω( )

S Ez t m+( )z t( )′ iWmT–( )exp win m( )

m M–=

M
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Algorithm The covariance function estimates are computed using covf. These are 
multiplied by a Hamming window of lag size M and then transformed using a 
Fourier transform. The relevant ratios and differences are then formed. For the 
default frequencies, this is done using a fast Fourier transform, which is more 
efficient than for user-defined frequencies. For multivariable systems, a 
straightforward for loop is used.

Note that M =  is in Table 6.1 of Ljung (1999). The standard deviations are 
computed as on pages 184 and 188 in Ljung (1999).

See Also bode, etfe, idfrd, nyquist, spafdr 

γ
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4 spafdrPurpose Estimate frequency response and spectrum using spectral analysis with 
frequency-dependent resolution

Syntax g = spafdr(data)
g = spafdr(data,Resol,w)

Description spafdr estimates the transfer function g and the noise spectrum  of the 
general linear model

where  is the spectrum of . 

data contains the output-input data as an iddata object. The data can be 
complex valued, and either time or frequency domain. It can also be an idfrd 
object containing frequency-response data.

g is returned as an idfrd object (see idfrd) with the estimate of at the 
frequencies  specified by row vector w. g also includes information about the 
spectrum estimate of at the same frequencies. Both results are returned 
with estimated covariances, included in g. See idfrd. The normalization of the 
spectrum is the same as described under spa.

Frequencies
The frequency variable w is either specified as a row vector of frequencies, or as 
a cell array {wmin,wmax}. In the latter case the covered frequencies will be 50 
logarithmically spaced points from wmin to wmax. You can change the number 
of points to NP by entering {wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value, which is 
100 logarithmically spaced frequencies between the smallest and largest 
frequency in data. For time-domain data, this means from 1/N*Ts to pi*Ts, 
where Ts is the sampling interval of data and N is the number of data.

Resolution
The argument Resol defines the frequency resolution of the estimates. The 
resolution (measured in rad/s) is the size of the smallest detail in the frequency 
function and the spectrum that is resolved by the estimate. The resolution is a 
tradeoff between obtaining estimates with fine, reliable details, and suffering 
from spurious, random effects: The finer the resolution, the higher the variance 
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in the estimate. Resol can be entered as a scalar (measured in rad/s), which 
defines the resolution over the whole frequency interval. It can also be entered 
as a row vector of the same length as w. Then Resol(k) is the local, 
frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the empty 
matrix, is Resol(k) = 2(w(k+1)-w(k)), adjusted upwards, so that a 
reasonable estimate is guaranteed. In all cases, the resolution is returned in 
the variable g.EstimationInfo.WindowSize.

Algorithm If the data is given in the time domain, it is first converted to the frequency 
domain. Then averages of Y(w)Conj(U(w)) and U(w)Conj(U(w)) are formed 
over the frequency ranges w, corresponding to the desired resolution around the 
frequency in question. The ratio of these averages is then formed for the 
frequency-function estimate, and corresponding expressions define the noise 
spectrum estimate. 

See Also bode, etfe, idfrd, nyquist, spa 
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4ssPurpose Convert idmodel objects of System Identification Toolbox to LTI models of 
Control System Toolbox

Syntax sys = ss(mod)
sys = ss(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.

sys is returned as an ss LTI model object. The noise input channels in mod are 
treated as follows: consider a model mod with both measured input channels u 
(nu channels) and noise channels e (ny channels) with covariance matrix 

Both measured input channels u and normalized noise input channels v in mod 
are input channels in sys. The noise input channels belong to the InputGroup 
'Noise', while the others belong to the InputGroup 'Measured'. The names of 
the noise input channels are v@yname, where yname is the name of the 
corresponding output channel. This means that the LTI object realizes the 
transfer function [G HL].

To transform only the measured input channels in sys, use 

sys = ss(mod('m')) or sys = ss(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI 
representations in ss contains the transfer functions from the normalized noise 
sources v to the outputs, that is, HL. If the model mod has both measured and 
noise inputs, sys = ss(mod('n')) gives a representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = ss(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to y, first use  

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are 
assigned the names e@yname.

Λ
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See Also frd, tf, zpk
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4ssdataPurpose Convert model to state-space form

Syntax [A,B,C,D,K,X0] = ssdata(m)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(m)

Description m is the model given as any idmodel object. A, B, C, D, K, and X0 are the matrices 
in the state-space description

where  is  or  depending on whether m is a continuous-time or 
discrete-time model. 

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space 
matrices.

If the underlying model itself is a state-space model, the matrices correspond 
to the same basis. If the underlying model is an input-output model, an 
observer canonical form representation is obtained.

For a time-series model (no measured input channels, u = []), B and D are 
returned as the empty matrices.

Subreferencing models in the usual way (see idmodel properties) will give the 
state-space representation of the chosen channels. Notice in particular that

[A,B,C,D] = ssdata(m('m')) 

gives the response from the measured inputs. This is a model without a 
disturbance description. Moreover,

[A,B,C,D,K] = ssdata(m('n'))

('n' as in “noise”) gives the disturbance description, that is, a time-series 
description of the additive noise with no measured inputs, so that B = [] and 
D = [].

x̃ t( ) Ax t( ) Bu t( ) Ke t( )+ +=

x 0( ) x0=

y t( ) Cx t( ) Dx t( ) e t( )+ +=
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To obtain state-space descriptions that treat all input channels, both u and e, 
as measured inputs, first apply the conversion

m = noisecnv(m)

or

m = noisecnv(m,'norm')

where the latter case first normalizes e to v, where v has a unit covariance 
matrix. See the reference page for noisecnv.

Algorithm The computation of the standard deviations in the input-output case assumes 
that an A polynomial is not used together with an F or D polynomial in 
(Equation 3-43). For the computation of standard deviations in the case that 
the state-space parameters are complicated functions of the parameters, the 
Gauss approximation formula is used together with numerical derivatives. The 
step sizes for this differentiation are determined by nuderst.

See Also idmodel, idss, nuderst
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4stepPurpose Plot step response with confidence regions

Syntax step(m)
step(data)
step(m,'sd',sd,Time)
step(data,'sd',sd,'PW',na,Time)
step(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
step(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,mN,

'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = step(m)
mod = step(data)

Description step can be applied both to idmodels and to iddata sets, as well as to any 
mixture.

For a discrete-time idmodel m, the step response y and, when required, its 
estimated standard deviation ysd, are computed using sim. When called with 
output arguments, y, ysd, and the time vector t are returned. When step is 
called without output arguments, a plot of the step response is shown. If sd is 
given a value larger than zero, a confidence region around the response is 
drawn. It corresponds to the confidence of sd standard deviations. If the input 
argument list contains 'fill', this region is plotted as a filled area.

Setting the Time Interval
The start time T1 and the end time T2 can be specified by Time = [T1 T2]. If 
T1 is not given, it is set to -T2/4. The negative time lags (the step is always 
assumed to occur at time 0) show possible feedback effects in the data when the 
step is estimated directly from data. If Time is not specified, a default value is 
used.

Estimating the Step Response from data
For an iddata set data, step(data) estimates a high-order, noncausal FIR 
model after first having prefiltered the data so that the input is “as white as 
possible.” The step response of this FIR model and, when asked for, its 
confidence region, are then plotted. Note that it might not be possible always 
to deliver the demanded time interval in this case, because of lack of excitation 
in the data. A warning is then issued. When called with an output argument, 
step, in the iddata case, returns this FIR model, stored as an idarx model. The 
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order of the prewhitening filter can be specified as na. The default value is 
na = 10.

Several Models/Data Sets
Any number and any mixture of models and data sets can be used as input 
arguments. The responses are plotted with each input/output channel (as 
defined by the models and data sets InputName and OutputName) as a separate 
plot. Colors, line styles, and marks can be defined by PlotStyle values, as in

step(m1,'b-*',m2,'y--',m3,'g')

Noise Channels
The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v:

• step(m) plots the step response of the transfer function G.

• step(m('n')) plots the step response of the transfer function H (ny inputs 
and ny outputs).The input channels have names e@yname, where yname is the 
name of the corresponding output.

• If m is a time series, that is, nu = 0, step(m) plots the step response of the 
transfer function H.

• step(noisecnv(m)) plots the step response of the transfer function [G H] 
(nu+ny inputs and ny outputs). The noise input channels have names 
e@yname, where yname is the name of the corresponding output.

• step(noisecnv(m,'norm')) plots the step response of the transfer function 
[G HL] (nu+ny inputs and ny outputs). The noise input channels have names 
v@yname, where yname is the name of the corresponding output.

Arguments If step is called with a single idmodel m, the output argument y is a 3-D array 
of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector t, ny is the 
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number of output channels, and nu is the number of input channels. Thus 
y(:,ky,ku) is the response in the kyth output channel to a step in the kuth 
input channel. No plot is produced when output arguments are used.

ysd has the same dimensions as y and contains the standard deviations of y. 
This is normally computed using sim. However, when the model m contains an 
estimated delay (dead time) as in certain process models, the standard 
deviation is estimated with Monte Carlo techniques, using simsd.

If step is called with an output argument and a single data set in the input 
arguments, the output is returned as an idarx model mod containing the 
high-order FIR model, and its uncertainty. By calling step with mod, the 
responses can be displayed and returned without your having to redo the 
estimation.

Examples step(data,'sd',3) estimates and plots the step response

mod = step(data)
step(mod,'sd',3)

See Also cra, impulse
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4strucPurpose Generate model structure matrices

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures composed of all combinations of 
the orders and delays given in row vectors NA, NB, and NK. The format of NN is 
consistent with the input format used by arxstruc and ivstruc. The command 
is intended for single-input systems only.

Examples The statement 

NN = struc(1:2,1:2,4:5);

produces

NN =
 1  1  4
 1  1  5
 1  2  4
 1  2  5
 2  1  4
 2  1  5
 2  2  5

See Also arxstruc, ivstruc, selstruc
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4tfPurpose Convert idmodel objects of System Identification Toolbox to transfer-function 
LTI models of Control System Toolbox

Syntax sys = tf(mod)
sys = tf(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss,  or idmodel.

sys is returned as ta tf LTI model object. The noise input channels in mod are 
treated as follows:

Consider a model mod with both measured input channels u (nu channels) and 
noise channels e (ny channels) with covariance matrix 

where L is a lower triangular matrix. Notice that mod.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v.

Both measured input channels u and normalized noise input channels v in mod 
are input channels in sys. The noise input channels belongs to the InputGroup 
'Noise', while the others belong to the InputGroup 'Measured'. The names of 
the noise input channels will be v@yname, where yname is the name of the 
corresponding output channel. This means that the LTI object realizes the 
transfer function [G HL].

To transform only the measured input channels in mod, use 

sys = tf(mod('m')) or sys = tf(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI representation  
contains the transfer functions from the normalized noise sources v to the 
outputs, that is, HL. If the model mod has both measured and noise inputs, sys 
= tf(mod('n')) gives a representation of the additive noise.

In addition, you can use normal subreferencing.
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sys = tf(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to y, first use  

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are 
assigned the names e@yname.

See Also frd, ss, zpk
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4tfdataPurpose Convert model to transfer-function form

Syntax [num,den] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and nu input 
channels.

num is a cell array of dimension ny-by-nu. num{ky,ku} (note the curly brackets) 
contains the numerator of the transfer function from input ku to output ky. 
This numerator is a row vector whose interpretation is described below.

Similarly, den is an ny-by-nu cell array of the denominators.

sdnum and sdden have the same formats as num and den. They contain the 
standard deviations of the numerator and denominator coefficients.

If m is a SISO model, adding an extra input argument 'v' (for vector) will 
return num and den as vectors rather than cell arrays.

The formats of num and den are the same as those used by the Signal Processing 
Toolbox and the Control System Toolbox, both for continuous-time and 
discrete-time models. See “Examining Models” on page 3-57 and the examples 
below.

The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v:

• tfdata(m) returns the transfer function G.

• tfdata(m('n')) returns the transfer function H (ny inputs and ny outputs).
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• If m is a time series, that is, nu = 0, tfdata(m) returns the transfer function 
H.

• tfdata(noisecnv(m)) returns the transfer function [G H] (nu+ny inputs and 
ny outputs).

• tfdata(noisecnv(m,'norm')) returns the transfer function [G HL] (nu+ny 
inputs and ny outputs).

Examples For a continuous-time model,

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model,

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as

Note that for discrete-time models, idpoly and polydata have a different 
interpretation of the numerator vector, in case it does not have the same length 
as the denominator vector. To avoid confusion, fill out with zeros to make 
numerator and denominator vectors the same length. Do this with tfdata.

See Also idpoly, noisecnv
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4timestampPurpose Return date and time when object was created or last modified

Syntax timestamp(obj)
ts = timestamp(obj)

Description obj is any idmodel, iddata, or idfrd object. timestamp returns or displays a 
string with information about when the object was created and last modified.



view

4-223

4viewPurpose Plot model characteristics using LTI viewer in Control System Toolbox

Syntax view(m)
view(m('n'))
view(m1,...,mN,Plottype)
view(m1,PlotStyle1,...,mN,PlotStyleN)

Description m is the output-input data to be graphed, given as any idfrd or idmodel object. 
After appropriate model transformations, the LTI viewer of the Control System 
Toolbox is invoked. This allows bode, nyquist, impulse, step, and zero/poles 
plots.

To compare several models m1,...,mN, use view(m1,...,mN). With PlotStyle, 
the color, line style, and marker of each model can be specified.

view(m1,'y:*',m2,'b')

Adding Plottype as a last argument specifies the type of plot in which view is 
initialized. Plottype is any of 'impulse', 'step', 'bode', 'nyquist', 
'nichols', 'sigma', or 'pzmap'. It can also be given as a cell array containing 
any collection of these strings (up to 6) in which case a multiplot is shown.

view does not display confidence regions. For that, use bode, nyquist, impulse, 
step, and pzmap.

The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix 

where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v:

• view(m) plots the characteristics of the transfer function G.
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• view(m('n')) plots the characteristics of the transfer function HL (ny inputs 
and ny outputs). The input channels have names v@yname, where yname is 
the name of the corresponding output.

• If m is a time series, that is, nu = 0, view(m) plots the characteristics of the 
transfer function HL.

• view(noisecnv(m)) plots the characteristics of the transfer function [G H] 
(nu+ny inputs and ny outputs). The noise input channels have names 
e@yname, where yname is the name of the corresponding output.

• view(noisecnv(m,'norm')) plots the characteristics of the transfer function 
[G HL] (nu+ny inputs and ny outputs). The noise input channels have names 
v@yname, where yname is the name of the corresponding output.

view does not give access to all of the features of ltiview. Use

ml = ss(m), ltiview(Plottype,ml,...) 

to reach these options.

See Also bode, impulse, nyquist, step, pzmap
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4zpkPurpose Convert idmodel objects of System Identification Toolbox to state-space LTI 
models of Control System Toolbox

Syntax sys = zpk(mod)
sys = zpk(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.

sys is returned as a zpk LTI model object. The noise input channels in mod are 
treated as follows: consider a model mod with both measured input channels u 
(nu channels) and noise channels e (ny channels) with covariance matrix 

where L is a lower triangular matrix. Note that mod.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v.

Both measured input channels u and normalized noise input channels v in mod 
are input channels in sys. The noise input channels belongs to the InputGroup 
'Noise', while the others belong to the InputGroup 'Measured'. The names of 
the noise input channels are given by v@yname, where yname is the name of the 
corresponding output channel. This means that the LTI object realizes the 
transfer function [G HL].

To transform only the measured input channels in sys, use 

sys = zpk(mod('m')) or sys = zpk(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI representation  
contains the transfer functions from the normalized noise sources v to the 
outputs, that is, HL. If the model mod has both measured and noise inputs, sys 
= zpk(mod('n')) gives a representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = zpk(mod(1,[3 4]))
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If you want to describe [G H] or H (unnormalized noise), from e to y, first use  

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are 
assigned have the names e@yname.

See Also frd, ss, tf
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4zpkdataPurpose Compute zeros, poles, and transfer-function gains of models

Syntax [z,p,k] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and nu input 
channels. 

z is a a cell array of dimension ny-by-nu. z{ky,ku} (note the curly brackets) 
contains the zeros of the transfer function from input ku to output ky. This is a 
column vector of possibly complex numbers.

Similarly, p is an ny-by-nu cell array containing the poles.

k is a ny-by-nu matrix whose ky-ku entry is the transfer function gain of the 
transfer function from input ku to output ky. Note that the transfer function 
gain is the value of the leading coefficient of the numerator when the leading 
coefficient of the denominator is normalized to 1. It thus differs from the static 
gain. The static gain can be retrieved as Ks = freqresp(m,0).

dz contains the covariance matrices of the zeros in the following way: dz is a 
ny-by-nu cell array. dz{ky,ku} contains the covariance information about the 
zeros of the transfer function from ku to ky. It is a 3-D array of dimension 
2-by-2-by-Nz, where Nz is the number of zeros. dz{ky,ku}(:,:,kz) is the 
covariance matrix of the zero z{ky,ku}(kz), so that the 1-1 element is the 
variance of the real part, the 2-2 element is the variance of the imaginary part, 
and the 1-2 and 2-1 elements contain the covariance between the real and 
imaginary parts.

dp contains the covariance matrices of the poles in the same way.

dk is a matrix containing the variances of the elements of k.

If m is a SISO model, adding an extra input argument 'v' (for vector) returns 
z and p as vectors rather than cell arrays.

Note that the zeros and the poles are associated with the different channel 
combinations. To obtain the so-called transmission zeros, use tzero.

The noise input channels in m are treated as follows: Consider a model m with 
both measured input channels u (nu channels) and noise channels e (ny 
channels) with covariance matrix Λ
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where L is a lower triangular matrix. Note that m.NoiseVariance = . The 
model can also be described with a unit variance, normalized noise source v.

Then,

• zpkdata(m) returns the zeros and poles of G.

• zpkdata(m('n')) returns the zeros and poles of H (ny inputs and ny 
outputs).

• If m is a time series, that is, nu = 0, zpkdata(m) returns the zeros and poles 
of H.

• zpkdata(noisecnv(m)) returns the zeros and poles of the transfer function 
[G H] (nu+ny inputs and ny outputs).

• zpkdata(noisecnv(m,'norm')) returns the zeros and poles of the transfer 
function [G HL] (nu+ny inputs and ny outputs).

The procedure handles both models in continuous and discrete time. 

Note that you cannot rely on information about zeros and poles at the origin 
and at infinity for discrete-time models. (This is a somewhat confusing issue 
anyway.)

Algorithm The poles and zeros are computed using ss2zp. The covariance information is 
computed using the Gauss approximation formula, using the parameter 
covariance matrix contained in m. When the transfer function depends on the 
parameters, numerical differentiation is applied. The step sizes for the 
differentiation are determined in the M-file nuderst. 

y Gu He+=
cov e( ) Λ LL′= =

Λ

y Gu HLv+=
cov v( ) I=
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