
For Use with MATLAB®

User’s Guide
Version 6

System Identification
Toolbox

Lennart Ljung

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox User’s Guide
© COPYRIGHT 1988 – 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

April 1988 First printing
July 1991 Second printing
May 1995 Third printing
November 2000 Fourth printing Revised for Version 5.0 (Release 12)
April 2001 Fifth printing
July 2002 Online only Revised for Version 5.0.2 (Release 13)
June 2004 Sixth printing Revised for Version 6.0.1 (Release 14)
March 2005 Online only Revised for Version 6.1.1 (Release R14SP2)
September 2005 Seventh printing Revised for Version 6.1.2 (Release R14SP3)
March 2006 Online only Revised for Version 6.1.3 (Release 2006a)

About the Author
Lennart Ljung received his Ph.D. in Automatic Control from Lund Institute of Technology in
1974. Since 1976 he has been Professor of the chair of Automatic Control in Linkoping, Sweden,
and is currently Director of the Center for the “Information Systems for Industrial Control and
Supervision” (ISIS). He has held visiting positions at Stanford and MIT and has written several
books on System Identification and Estimation. He is an IEEE Fellow, an IFAC Advisor, a
member of the Royal Swedish Academy of Sciences (KVA) and of the Royal Swedish Academy of
Engineering Sciences (IVA), and has received honorary doctorates from the Baltic State
Technical University in St. Petersburg and from Uppsala University.

i

Contents

1
Getting Started

What Is the System Identification Toolbox? 1-2

Basic Questions About System Identification 1-3

Common Terms Used in System Identification 1-5

Basic Information About Dynamic Models 1-7
Signals . 1-7
The Basic Dynamic Model . 1-8
Variants of Model Descriptions . 1-8
How to Interpret the Noise Source . 1-9
Terms to Characterize the Model Properties 1-11

The Basic Steps of System Identification 1-13

A Startup Identification Procedure . 1-15
Step 1: Look at the Data . 1-15
Step 2: Get a Feel for the Difficulties . 1-15
Step 3: Examine the Difficulties . 1-16
Step 4: Fine-Tune Orders and Disturbance Structures 1-18
Multivariable Systems . 1-19

Reading More About System Identification 1-22

2
The Graphical User Interface

The Big Picture . 2-2
The Model and Data Boards . 2-2
Working Data . 2-4
Views . 2-4

ii Contents

Validation Data . 2-4
System Identification Workflow . 2-4
Session Management . 2-5
Workspace Variables . 2-6
Context-Sensitive Help . 2-6

Handling Data . 2-7
Data Representation . 2-7
Getting Data into the GUI . 2-8
Taking a Look at the Data . 2-11
Preprocessing Data . 2-12
Checklist for Data Handling . 2-14
Simulating Data . 2-15
Estimating Models . 2-16
Direct Estimation of the Impulse Response 2-16
Direct Estimation of the Frequency Response 2-17
Estimation of Simple Process Model . 2-19
Estimation of Parametric Models . 2-21
ARX Models . 2-24
ARMAX, Output-Error (OE), and Box-Jenkins (BJ) Models . . 2-26
State-Space Models . 2-28
User-Defined Model Structures . 2-30

Examining Models . 2-31
Views and Models . 2-31
About Plot Views . 2-31
Frequency Response and Disturbance Spectra 2-33
Transient Response . 2-33
Poles and Zeros . 2-34
Compare Measured and Model Outputs 2-34
Residual Analysis . 2-36
Text Information . 2-36
LTI Viewer . 2-37
Further Analysis in the MATLAB Workspace 2-37

Additional GUI Topics . 2-39
Mouse Buttons and Hot Keys . 2-39
Troubleshooting in Plots . 2-40

iii

Layout Questions and idprefs.mat . 2-40
Customized Plots . 2-41
What You Cannot Do Using the GUI . 2-41

3
Tutorial

Overview . 3-2

Toolbox Commands . 3-3

An Introductory Example to Command Model 3-5
Example Details . 3-5

The System Identification Problem . 3-9
Impulse Responses, Frequency Functions, and Spectra 3-9
Polynomial Representation of Transfer Functions 3-11
State-Space Representation of Transfer Functions 3-13
Continuous-Time State-Space Models 3-14
Estimating Impulse Responses . 3-15
Estimating Spectra and Frequency Functions 3-15
Estimating Parametric Models . 3-16
Subspace Methods for Estimating State-Space Models 3-17
The advice Command . 3-18

Data Representation and Nonparametric
Model Estimation . 3-19

Data Representation . 3-19
Correlation Analysis . 3-20
Spectral Analysis . 3-20
Frequency Domain Data . 3-22
More on the Data Representation in iddata 3-23

Parametric Model Estimation . 3-28
ARX Models . 3-29
AR Models . 3-29
General Polynomial Black-Box Models 3-30

iv Contents

Process Models . 3-32
State-Space Models . 3-32
Optional Variables . 3-33

Defining Model Structures . 3-39
Polynomial Black-Box Models: the idpoly Model 3-39
Process Models: the idproc Model . 3-41
Multivariable ARX Models: the idarx Model 3-43
Black-Box State-Space Models: the idss Model 3-46
Structured State-Space Models with Free Parameters:
the idss Model . 3-48
State-Space Models with Coupled Parameters:
the idgrey Model . 3-51
State-Space Structures: Initial Values and
Numerical Derivatives . 3-54
Estimating Continuous-Time Models: General Remarks 3-54

Examining Models . 3-57
Parametric Models: idmodel and Its Children 3-57
Frequency Function Format: the idfrd Model 3-63
Graphs of Model Properties . 3-64
Transformations to Other Model Representations 3-67
Discrete- and Continuous-Time Models 3-68

Model Structure Selection and Validation 3-70
Comparing Different Structures . 3-70
Impulse Response to Determine Delays 3-73
Checking Pole-Zero Cancellations . 3-73
Residual Analysis . 3-73
Model Error Models . 3-74
Noise-Free Simulations . 3-75
Assessing the Model Uncertainty . 3-75
Comparing Different Models . 3-77
Selecting Model Structures for Multivariable Systems 3-77

Dealing with Data . 3-81
Offset Levels . 3-81
Outliers and Bad Data; Multiple-Experiment Data 3-81
Missing Data . 3-82
Filtering Data: Focus . 3-82

v

Feedback in Data . 3-83
Delays . 3-84

Recursive Parameter Estimation . 3-86
Basic Algorithm . 3-86
Choosing an Adaptation Mechanism and Gain 3-87
Available Algorithms . 3-89
Segmentation of Data . 3-91

Miscellaneous Topics . 3-93
Time-Series Modeling . 3-93
Periodic Inputs . 3-96
Connections Between the Control System Toolbox and the
System Identification Toolbox . 3-96
Memory/Speed Tradeoffs . 3-98
Local Minima . 3-98
Initial Parameter Values . 3-99
Initial State . 3-100
Initial States for Frequency Domain Data 3-101
Using Simulation to Validate Estimated Models 3-101
The Estimated Parameter Covariance Matrix 3-103
No Covariance . 3-104
nk and InputDelay . 3-104
Linear Regression Models . 3-106
Spectrum Normalization and the Sampling Interval 3-107
Interpretation of the Loss Function . 3-109
Enumeration of Estimated Parameters 3-110
Complex-Valued Data . 3-111
Strange Results . 3-111

4
Function Reference

Functions — By Category . 4-3
Help Functions . 4-3
Graphical User Interface . 4-3
Simulation and Prediction . 4-3

vi Contents

Data Manipulation . 4-3
Nonparametric Estimation . 4-4
Parameter Estimation . 4-6
Model Structure Creation . 4-6
Manipulating Model Structures . 4-7
Model Conversion . 4-7
Model Analysis . 4-8
Model Validation . 4-8
Assessing Model Uncertainty . 4-10
Model Structure Selection . 4-10
Recursive Parameter Estimation . 4-11
General . 4-11

Functions — Alphabetical List . 4-12

Index

1

Getting Started

What Is the System Identification
Toolbox? (p. 1-2)

A brief overview of the System Identification Toolbox

Basic Questions About System
Identification (p. 1-3)

A quick look at the fundamental issues of system
identification

Common Terms Used in System
Identification (p. 1-5)

A glossary of common system identification terms

Basic Information About Dynamic
Models (p. 1-7)

A discussion of properties of dynamic models, and
variations of model descriptions

The Basic Steps of System
Identification (p. 1-13)

A global view of the system identification process

A Startup Identification Procedure
(p. 1-15)

A qualitative look at system identification procedure

Reading More About System
Identification (p. 1-22)

References to standard texts in system identification

1 Getting Started

1-2

What Is the System Identification Toolbox?
The System Identification Toolbox enables you to build accurate, simplified
models of complex systems from noisy time-series data.

It provides tools for creating mathematical models of dynamic systems based
on observed input/output data. The toolbox features a flexible graphical user
interface that aids in the organization of data and models. The identification
techniques provided with this toolbox are useful for applications ranging from
control system design and signal processing to time-series analysis and
vibration analysis.

For Simulink® users, the System Identification Toolbox provides a library,
slident, that contains blocks for performing system identification in the
Simulink block diagram environment. In addition, you can use this library to
do the following:

• Simulate any idmodel with or without noise

• Use iddata objects as data sources and sinks

Basic Questions About System Identification

1-3

Basic Questions About System Identification

What is system identification?
System identification enables you to build mathematical models of a dynamic
system based on measured data. You adjust the parameters of a given model
until its output coincides as well as possible with the measured output.

How do you know if the model is any good?
A good test is to compare the output of the model to measured data that was
not used for the fit (called validation data).

Can the quality of the model be tested in other ways?
It is also valuable to look at the data that could not be reproduced by the model
(the residuals). This should not be correlated with other available information,
such as the system’s input.

What models are most common?
The techniques apply to general models. The most common models are
difference-equation descriptions, such as ARX and ARMAX models, as well as
all types of linear state-space models.

Do you have to assume a model of a particular type?
For parametric models, you specify the model structure. This can be as easy as
selecting a single integer — the model order — or it can involve several choices.
If you assume that the system is linear, you can directly estimate its impulse
or step response by using correlation analysis, or its frequency response by
using spectral analysis. This enables useful comparisons with other estimated
models.

What does the System Identification Toolbox contain?
It contains all the common techniques used to adjust parameters in all kinds of
linear models. It also enables you to examine the quality of model properties,
as well as to preprocess and polish the measured data.

Isn’t it a big limitation to work only with linear models?
No, actually not. Many common model nonlinearities are such that the
measured data should be nonlinearly transformed (by squaring a voltage input
if the stimulus is the power, for example). You can get quite far by using

1 Getting Started

1-4

physical insight about the system you are modeling to determine the
appropriate transformations of variables that may make the model linear.

How do I get started?
If you are a beginner, browse through Chapter 2, “The Graphical User
Interface.” Then try out a couple of the data sets that come with the toolbox.
Use the graphical user interface (GUI) and check out the built-in help
functions.

Is this really all there is to system identification?
There is a great deal written on the subject of system identification. However,
the best way to explore system identification is by working with real data. It is
important to remember that any estimated model, no matter how good it looks
on your screen, is only a simplified reflection of reality. Surprisingly often, this
is sufficient for rational decision-making.

Common Terms Used in System Identification

1-5

Common Terms Used in System Identification
This section defines some of the terms that are frequently used in system
identification:

• Estimation data is the data set that is used to create a model of the data. In
the GUI, this is the same as working data.

• Validation data is the data set (different from estimation data) that is used
to validate the model. Validation is accomplished by simulating the model for
the validation data and then computing the residuals from the model for this
data.

• Model views are the various ways of inspecting the properties of a model,
such as zeros and poles, as well as transient and frequency responses.

• Data views are the various ways of inspecting the properties of data sets. It
is most common and useful to plot the data and scrutinize it for so-called
outliers. These are unreliable measurements that can arise from failures in
the measurement equipment. Furthermore, the frequency content of the
data signals can also be most revealing when viewed on a periodogram or a
spectral estimate.

• Model sets or model structures are families of models with adjustable
parameters. Parameter estimation is the process of finding the “best” values
of these adjustable parameters. The system identification problem is to find
both the model structure and good numerical values of the model
parameters.

• Parametric identification methods are techniques for estimating
parameters for a given model structure. This is a matter of using numerical
search to find those numerical values of the parameters that give the best
agreement between the model’s (simulated or predicted) output and the
measured output.

• Nonparametric identification methods are techniques to estimate model
behavior without necessarily using a given parameterized model set. Typical
nonparametric methods include correlation analysis, which estimates a
system’s impulse response, and spectral analysis, which estimates a
system’s frequency response.

1 Getting Started

1-6

• Model validation is the process of gaining confidence in a model. This is a
highly subjective task, which involves scrutinizing all aspects of the model
properties. An important tool is to study the model’s ability to reproduce the
behavior of the validation data set by simulation and prediction. Another
useful technique is to analyze the properties of the residuals.

Basic Information About Dynamic Models

1-7

Basic Information About Dynamic Models
System identification is about building dynamic models. Therefore, some
knowledge about dynamic models is a prerequisite for using this toolbox
successfully. This topic is addressed in several places in Chapter 3, “Tutorial.”
Numerous textbooks are also available for introductory and in-depth study.
This section describes what you need to know about dynamic models at the
most basic level to get started with the System Identification Toolbox.

Signals
Models describe relationships between measured signals. It is convenient to
distinguish between input signals and output signals, such that the outputs are
partly determined by the inputs.

For example, consider an airplane where the inputs are control surfaces, such
as ailerons and elevators, and the outputs are the orientation, velocity, and
position of the airplane. In most cases, the outputs are also affected by signals
other than the measured inputs. Such unmeasured inputs are called
disturbance signals or noise. For the airplane, these additional signals would
be wind gusts and turbulence effects.

If inputs, outputs, and disturbances are denoted by u, y, and e, respectively, the
relationship is depicted in the following figure.

Input Signals u, Output Signals y, and Disturbances e

All these signals are functions of time, and the value of the input at time t is
denoted by u(t). The modeling problem is to describe how these three signals
are related. In system identification, only discrete-time points are often
considered because instruments typically record signals at discrete time
instants, which are typically equally spaced with a sampling interval of T time
units.

y

e

u

1 Getting Started

1-8

The Basic Dynamic Model
The basic relationship between signals is the linear difference equation. For
example, consider the equation

Such a relationship informs us how to compute the output y(t) if the input is
known and the disturbance can be ignored:

Therefore, the output at time t is a linear combination of past outputs and past
inputs. This is a dynamic model because the output at time t depends on the
input signal at previous time instants.

In this case, the system identification problem is then to use measurements of
u and y to determine

• The coefficients (such as -1.5 and 0.7)

• How many delayed outputs to use in the description (in this example, there
are two: y(t-T) and y(t-2T))

• The time delay in the system (in the second equation, the time delay is 2T
because it takes 2T time units before a change in u affects y).

• How many delayed inputs to use (two in the example: u(t-2T) and u(t-3T)).
The number of delayed inputs and outputs is usually referred to as the model
order.

Variants of Model Descriptions
The basic dynamic model given above is called an ARX model. There are
several variants of this model known as output-error (OE) models, ARMAX
models, FIR models, and Box-Jenkins (BJ) models, which are described later in
this book. At a basic level, it is sufficient to think of these models as variants of
the ARX model that also include a characterization of the properties of the
disturbance e.

Linear state- space models are another class of models, which is treated in more
detail below. The essential model-structure variable is the model order, which
is a scalar. Then, you only have “one knob to turn” when you search for a
suitable model description.

y t() 1.5y t T–()– 0.7y t 2T–()+ 0.9u t 2T–() 0.5u t 3T–()+= ARX()

y t() 1.5y t T–() 0.7y t 2T–()– 0.9u t 2T–() 0.5u t 3T–()+ +=

Basic Information About Dynamic Models

1-9

General linear models can be described symbolically by

y=Gu+He

where the measured output y(t) is the sum of a contribution from the measured
input u(t) and a contribution from the noise H e. The symbol G denotes the
dynamic properties of the system, that is, how the output is formed from the
input. For linear systems, G is the transfer function from input to output. The
symbol H refers to the noise properties and it is called the disturbance model.
H describes how the disturbances at the output are formed from some
standardized noise source e(t).

State-space models are common representations of dynamic models. They
describe the same type of linear difference relationship between the inputs and
the outputs as in the ARX model, but state-space models are rearranged so that
only one delay is used in the expressions. To achieve this, additional variables,
state variables, are introduced. State variables are not measured, but can be
reconstructed from the measured input-output data. This is especially useful
when there are several output signals, i.e., when y(t) is a vector. Chapter 3,
“Tutorial,” gives more details about this. For basic use of the toolbox, it is
sufficient to know that the order of the state-space model relates to the number
of delayed inputs and outputs used in the corresponding linear difference
equation. The state-space representation looks like

x(t+1)=Ax(t)+Bu(t)+Ke(t)

y(t)=Cx(t)+Du(t)+e(t)

Here x(t) is the vector of state variables. The model order is the dimension of
this vector. The matrix K determines the disturbance properties. Notice that if
K = 0, then the noise source e(t) affects only the output, and no specific model
of the noise properties is built. This case corresponds to H = 1 in the general
linear model above, and is usually referred to as an output-error model. Notice
that D = 0 means that there is no direct influence from u(t) on y(t). Thus the
effect of the input on the output all passes via x(t) and is delayed by at least one
sample. The first value of the state variable vector x(0) reflects the initial
conditions for the system at the beginning of the data record. When dealing
with models in state-space form, you decide whether to estimate D, K, and x(0),
or to set them to zero.

How to Interpret the Noise Source
In many cases of system identification, the effects of the noise on the output are
insignificant compared to those of the input. With good signal-to-noise ratios

1 Getting Started

1-10

(SNR), it is less important to have an accurate disturbance model.
Nevertheless, it is important to understand the role of the disturbances and the
noise source e(t), whether it appears in the ARX model or in the general
descriptions given above.

When dealing with disturbances, it is important to

• Understand white noise

• Interpret the noise source

• Use the noise source when working with the model

How can you understand white noise? From a formal point of view, the noise
source e is normally regarded as white noise. This means that it is entirely
unpredictable. In other words, it is impossible to guess the value of e(t) no
matter how accurately the past data up to time t-1 has been measured.

How can you interpret the noise source? The actual disturbance contribution to
the output, H e, has real significance. It contains all the influences on the
measured y, known and unknown, that are not contained in the input u. It
explains the fact that even if an experiment is repeated with the same input,
the output signal is typically somewhat different. However, the source of the
noise, e, need not have any physical significance.In the airplane example
mentioned earlier, the disturbance effects are wind gusts and turbulence.
Describing these as arising from a white noise source via a transfer function H
is just a convenient way of capturing their character.

How can you deal with the noise source when using the model? If the model is
only used for simulation, i.e., the responses to various inputs are to be studied,
then the disturbance model plays no immediate role. Because the noise source
e(t) for new data is unknown, it is taken as zero in the simulations so as to study
the effect of the input alone (a noise-free simulation). Making another
simulation, with e being arbitrary white noise, will reveal how reliable the
result of the simulation is but will not give a more accurate simulation result
for the actual system’s response. It is a different thing when the model is used
for prediction: Predicting future outputs from inputs and previously measured
outputs also means that future disturbance contributions have to be predicted.
A known, or estimated, correlation structure for disturbances (which is really
the disturbance model H) allows the prediction of future disturbances based on
the previously measured values.

The need for and the usage of the noise model can be summarized as follows:

Basic Information About Dynamic Models

1-11

• It is, in most cases, required to obtain a better estimate for the dynamics, G.

• It indicates the reliability of noise-free simulations.

• It is required for reliable predictions and stochastic control design.

Terms to Characterize the Model Properties
The properties of an input-output relationship, such as the ARX model, follow
from the numerical values of the coefficients and the number of delays used.
This is, however, a fairly implicit way of talking about the model properties. In
practice, the following terms are used:

Impulse Response
The impulse response of a dynamic model is the output signal that results
when the input is an impulse; i.e., u(t) is zero for all values of t except t=0,
where u(0)=1. It can be computed as in the equation following (ARX), by setting
t equal to 0, T, 2T, ... , and by setting y(-T)=y(-2T)=0 and u(0)=1.

Step Response
The step response is the output signal that results from a step input; i.e., u(t)
is 0 for negative values of t and 1 for positive values of t. The impulse and step
responses together are called the model’s transient response.

Frequency Response
The frequency response of a linear dynamic model describes how the model
reacts to sinusoidal inputs. If the input u(t) is a sinusoid of a certain frequency,
then the output y(t) is also a sinusoid of this frequency. The amplitude and the
phase (relative to the input) will, however, be different. This frequency
response is most often depicted by two plots: one that shows the amplitude
change as a function of the sinusoid’s frequency, and one that shows the phase
shift as a function of frequency. This is known as a Bode plot.

1 Getting Started

1-12

Zeros and Poles
The zeros and the poles are equivalent ways of describing the coefficients of a
linear difference equation, such as the ARX model. The poles relate to the
output side and the zeros relate to the input side of this equation. The number
of poles (or zeros) is equal to the number of sampling intervals between the
most and least delayed output (or input). In the ARX model example in the
beginning of this section, there are two poles and one zero.

The Basic Steps of System Identification

1-13

The Basic Steps of System Identification
The system identification problem is to estimate a model of a system based on
the observed input-output data. Several ways to describe a system and to
estimate such descriptions exist. This section provides a brief account of the
most important approaches.

The procedure to determine a model of a dynamic system from observed
input-output data involves three basic ingredients:

• The input-output data

• A set of candidate models (the model structure)

• A criterion to select a particular model in the set, based on the information
in the data (the identification method)

The typical identification process consists of stages where you iteratively select
a model structure, compute the best model in the structure, and evaluate this
model’s properties. This cycle can be itemized, as follows:

1 Design an experiment and collect input-output data from the process to be
identified.

2 Examine the data. Polish the data by removing trends and outliers, and
select useful portions of the original data. You can also apply filters to the
data to enhance important frequency ranges.

3 Select and define a model structure (a set of candidate system descriptions),
within which a model is to be found.

4 Compute the best model in the model structure according to the
input-output data and a given criterion for goodness of fit.

5 Examine the properties of the model obtained.

6 If the model is good enough, then stop; otherwise go back to step 3 to try
another model structure. You can also try other estimation methods (step 4),
or work further on the input-output data (steps 1 and 2).

1 Getting Started

1-14

The System Identification Toolbox offers several functions for each of these
stages in the process.

For step 2, the System Identification Toolbox offers routines to plot the data,
filter the data, and remove trends in the data, as well as to resample and
reconstruct missing data.

For step 3, there are a variety of nonparametric models, the most common
black-box input-output and state-space structures, as well as general
tailor-made linear state-space models in discrete and continuous time.

For step 4, general prediction error (maximum likelihood) methods, as well as
instrumental variable methods and subspace methods, are offered for
parametric models, while basic correlation and spectral analysis methods are
used for nonparametric model structures.

For examining the models in step 5, many functions are provided to compute
and present frequency functions, poles, and zeros, as well as to simulate and
predict with the model. There are also functions for transforming between
continuous-time and discrete-time model descriptions, as well as to formats
that are used in other toolboxes (such as the Control System Toolbox and the
Signal Processing Toolbox).

A Startup Identification Procedure

1-15

A Startup Identification Procedure
There are no guaranteed strategies for creating good models in system
identification. Given the number of possibilities, it is easy to get confused about
what to do, what model structures to test, and so on. This section describes one
strategy that often works well. The steps refer to functions within the GUI, but
you can also go through them in command mode. For the basic commands, see
Chapter 4, “Function Reference.”

Step 1: Look at the Data
Plot the data. Look at it carefully and try to infer the dynamics. Can you see
the effects in the outputs due to the changes in the input? Can you see
nonlinear effects, such as different responses at different levels, or different
responses to a step-up and a step-down? Are there portions of the data that
appear to be messy or noninformative? Use these insights to select portions of
the data for estimation and validation.

Do physical levels play a role in your model? If not, detrend the data by
removing its mean. The models will then describe how changes in the input
lead to changes in the output, but do not explain the actual levels of the signals.
This is the normal situation.

The default situation with good data is that you detrend by removing the mean,
then select the first half or so of the data record for estimation purposes, and
use the remaining data for validation.

This is what happens when you select Preprocess -> Quickstart in the main
ident window.

Step 2: Get a Feel for the Difficulties
Select Estimate -> Quickstart in the main ident window. This computes and
displays the spectral analysis estimate, the correlation analysis estimate, a
fourth-order ARX model with a delay estimated from the correlation analysis,
and a default order state-space model computed by n4sid. This gives three
plots.

Check the agreement between the following:

• Spectral analysis estimate and the frequency functions of the ARX and
state-space models

1 Getting Started

1-16

• Correlation analysis estimate and the transient responses of the ARX and
state-space models

• Measured validation data output and the simulated outputs of the ARX and
state-space models

If the agreements are reasonable, then the problem is not so difficult and a
relatively simple linear model will do the job. Proceed to step 4 and perform
some fine-tuning of model orders and noise models, if necessary. Otherwise go
to step 3.

Step 3: Examine the Difficulties
There can be several reasons why the comparisons in step 2 did not look good.
This section discusses the most common ones and the approaches for handling
them.

Model Is Unstable
The ARX or state-space model might turn out to be unstable, but could still be
useful for control purposes. Change to a 5- or 10-step-ahead prediction instead
of simulation in the Model Output View.

Feedback in Data
If there is feedback from the output to the input due to some regulator, then
the spectral and correlation analysis estimates are not reliable. Discrepancies
between these estimates and the ARX and state-space models can therefore be
disregarded in this case. In the Model Residuals View of the parametric
models, feedback in the data can appear as a correlation between residuals and
input for negative lags.

Disturbance Model
If the state-space model is clearly better than the ARX model at reproducing
the measured output, this is an indication that the disturbances have a
substantial influence and it will be necessary to model them carefully.

Model Order
If a fourth-order model does not give a good Model Output plot, try using an
eighth-order model. If the fit improves, it follows that higher order models are
required but that linear models could be sufficient.

A Startup Identification Procedure

1-17

Additional Inputs
If the Model Output fit has not significantly improved by the approaches
discussed thus far, think about the physics of the application. Are there more
signals than have been, or could be, measured that might influence the output?
If so, include these among the inputs and try a fourth-order ARX model from
all the inputs again. (Note that the inputs need not be control signals; anything
measurable, including disturbances, can be treated as inputs.)

Nonlinear Effects
If the fit between measured and model output is still bad, consider the physics
of the application. Are there nonlinear effects in the system? In that case, form
the nonlinearities from the measured data and add those transformed
measurements as extra inputs. For example, if you realize that it is the
electrical power that is the driving stimulus in a heating process, and
temperature is the output, this could be as simple as forming the product of
voltage and current measurements. What transformations you choose depends,
of course, on the application. However, it does not take very much work to form
a number of additional inputs by reasonable nonlinear transformations of the
measured inputs, and just test whether including them improves the fit.

Still Problems?
If none of these tests leads to a model that reproduces the validation data
reasonably well, the conclusion might be that a sufficiently good model cannot
be produced from the data. There can be many reasons for this. It might be that
the system has quite complicated nonlinearities that cannot be realized on
physical grounds. In such cases, nonlinear, black-box models could be a
solution. The most frequently used models of this character are the Artificial
Neural Networks (ANN).

Another important reason for problems might be that the data does not contain
sufficient information, for example, because of bad signal-to-noise ratios, large
and nonstationary disturbances, and varying system properties.

Otherwise, use the insights from this step about suitable inputs and proceed to
step 4.

1 Getting Started

1-18

Step 4: Fine-Tune Orders and Disturbance
Structures
For real data there is no such thing as a correct model structure. However,
different structures can result in different model quality. The only way to
determine the model quality is to try different structures and then compare the
resulting model properties. There are a few things to look for in these
comparisons.

Fit Between Simulated and Measured Output
Keep the Model Output View open and look at the fit between the simulated
output of the model and the measured output for the validation data. Formally,
you could pick the model for which this number is the highest. In practice, it is
better to be more pragmatic and also take into account the model complexity
and whether the important features of the output response are captured.

Residual Analysis Test
If the model is a good model, the cross correlation function between residuals
and input does not go significantly outside the confidence region. Otherwise
there is something in the residuals that originates from the input and has not
been properly taken care of by the model. A clear peak at lag k shows that the
effect from input u(t-k) on y(t) is not correctly described. A rule of thumb is that
a slowly varying cross-correlation function outside the confidence region is an
indication of too few poles, while sharper peaks indicate too few zeros or wrong
delays.

Pole-Zero Cancellations
If the pole-zero plot (including confidence intervals) indicates pole-zero
cancellations in the dynamics, this suggests that lower order models can be
used. In particular, if it turns out that the orders of ARX models have to be
increased to get a good fit, but that pole-zero cancellations are indicated, then
the extra poles are just introduced to describe the noise. In this case, try the
ARMAX, OE, or BJ model structures with an A or F polynomial of an order
equal to that of the number of noncanceled poles.

What Model Structures Should Be Tested?
It often takes just a few seconds to compute and evaluate a model in a certain
structure, so you should have a generous attitude to performing the tests.
However, experience shows that when the basic properties of the system’s

A Startup Identification Procedure

1-19

behavior have been picked up, it is not much use to fine-tune orders just to
improve the fit by a fraction of a percent.

Many ARX models: There is a cheap way to test many ARX structures
simultaneously. Enter in the Orders text field many combinations of orders,
using the colon (:) notation. You can also click the Order Selection button.
When you select Estimate, models for all combinations (which could be
hundreds) are computed and their (prediction error) fit to validation data is
shown on a plot. By clicking in this plot, you insert the best models with any
chosen number of parameters into the Model Board, and evaluate them as
desired.

Many state-space models: A similar feature is also available for black-box
state-space models, estimated using n4sid. When a good order has been found,
try the PEM estimation method, which often improves the accuracy.

ARMAX, OE, and BJ models: Once you have a feel for suitable delays and
dynamics orders, it is often useful to try out ARMAX, OE, and/or BJ with these
orders and test some different orders for the disturbance transfer functions (C
and D). The OE structure is especially suitable for poorly damped systems.

To study the problem further, you could consult the extensive literature
available on order and structure selection.

Multivariable Systems
Systems with many input signals and/or many output signals are called
multivariable. Such systems are often more challenging to model. In particular
systems with several outputs could be difficult. A basic reason for the
difficulties is that the couplings between several inputs and outputs lead to
more complex models. The structures involved are richer, and more
parameters will be required to obtain a good fit.

Available Models
The System Identification Toolbox as well as the GUI handle general, linear
multivariable models. All models mentioned earlier are supported in the
single-output, multiple-input case. For multiple outputs, ARX models and
state-space models are covered. Multiple-output ARMAX and OE models are
covered via state-space representations: ARMAX corresponds to estimating the
K-matrix, while OE corresponds to fixing K to zero. (These are options in the
GUI model order editor.)

1 Getting Started

1-20

Generally speaking, it is preferable to work with state-space models in the
multivariable case, because the model structure complexity is easier to deal
with. It is essentially just a matter of choosing the model order.

Working with Subsets of the Input-Output Channels
In the process of identifying good models of a system, it is often useful to select
subsets of the input and output channels. Partial models of the system’s
behavior will then be constructed. It might not, for example, be clear whether
all measured inputs have a significant influence on the outputs. You can most
easily test that by removing an input channel from the data, building a model
for how the outputs depend on the remaining input channels, and checking
whether there is a significant deterioration in the fit of the model output from
the measured one. See also the discussion under Step 3 above.

Generally speaking, the fit gets better when more inputs are included and often
gets worse when more outputs are included. To understand the latter fact, you
should realize that a model that has to explain the behavior of several outputs
has a tougher job than one that must just account for a single output. If you
have difficulties obtaining good models for a multioutput system, it might be
wise to model one output at a time, to find out which are the difficult ones to
handle.

Models that are just to be used for simulations could very well be built up from
single-output models, for one output at a time. However, models for prediction
and control produce better results if constructed for all outputs simultaneously.
This follows from the fact that knowing the set of all previous output channels
gives a better basis for prediction than just knowing the past outputs in one
channel. Also, for systems where the different outputs reflect similar
dynamics, using several outputs simultaneously will help estimating the
dynamics.

Some Practical Advice
Both the GUI and command-line operation will do useful bookkeeping for you,
handling different channels. You could follow these steps:

1 Import data and create a data set with all input and output channels of
interest. Preprocess this set in terms of detrending, etc., and then select a
validation data set with all channels.

A Startup Identification Procedure

1-21

2 Then select a working data set with all channels, and estimate state-space
models of different orders, using n4sid for these data. Examine the resulting
model primarily using the Model Output view.

3 If it is difficult to get a good fit in all output channels or you would like to
investigate how important the different input channels are, construct new
data sets using subsets of the original input/output channels. Use the menu
item Preprocess -> Select Channels for this. Don’t change the validation
data. The GUI will keep track of the input and output channels. It does the
right thing when evaluating the channel-restricted models using the
validation data. It might also be appropriate to see if improvements in the
fit are obtained for various model types, built for one output at a time.

• If you decide on a multioutput model, it is often easiest to use state-space
models. Use n4sid as a primary tool and try pem when a good order has been
found.

1 Getting Started

1-22

Reading More About System Identification
There is substantial literature on system identification. The following textbook
deals with identification methods from a perspective like this toolbox’s, and
also describes methods for physical modeling:

• Ljung, L., and T. Glad, Modeling of Dynamic Systems, Prentice Hall,
Englewood Cliffs, N.J., 1994.

For more details about the algorithms and theories of identification,

• Ljung, L., System Identification – Theory for the User, Prentice Hall, Upper
Saddle River, N.J., 2nd edition, 1999.

• Söderström, T., and P. Stoica, System Identification, Prentice Hall
International, London, 1989.

For a treatment on frequency domain data in particular,

Pintelon, R., and J. Schoukens, System Identification. A Frequency Domain
Approach, IEEE Press, New York, 2001.

For more about system and signals,

• Oppenheim, J., and A.S. Willsky, Signals and Systems, Prentice Hall,
Englewood Cliffs, N.J., 1985.

The following textbook deals with the underlying numerical techniques for
parameter estimation:

• Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs,
N.J., 1983.

2
The Graphical User
Interface

The Big Picture (p. 2-2) A quick overview of the Ident GUI

Handling Data (p. 2-7) Importing, preprocessing, and viewing data

Estimating Models (p. 2-16) A discussion of direct and parametric
identification methods

Examining Models (p. 2-31) Examining, comparing, and validating identified
models using frequency and transient responses,
poles and zeros, and model outputs and residuals

Additional GUI Topics (p. 2-39) Additional topics about the Ident GUI, including
troubleshooting and customizing plots,
reconfiguring the default layout, and limitations
of the Ident GUI

2 The Graphical User Interface

2-2

The Big Picture
The System Identification Toolbox provides a graphical user interface (GUI).
The GUI covers most of the toolbox functions and provides easy access to all
variables that are created during a session. Start the session by typing

ident

in the MATLAB® Command Window.

The Main ident Window

The Model and Data Boards
System identification is about data and models and creating models from data.
The main information and communication window, ident, is therefore
dominated by two tables:

The Big Picture

2-3

• A table of available data sets, each represented by an icon

• A table of created models, each represented by an icon

These tables are referred to as the model board and the data board in this
chapter. You enter data sets in the data board by

• Opening earlier saved sessions

• Importing them from the MATLAB workspace

• Creating them by detrending, filtering, transforming, and selecting subsets
of another data set in the data board

Imports are handled under the Import data menu while creation of new data
sets is handled under the Preprocess menu. “Handling Data” on page 2-7
deals with this in more detail. The GUI supports three kinds of data objects for
estimation. Both objects and vector- or matrix-valued signals can be imported:

• Time-domain input/output signals (in the iddata object format). These are
marked by a white background color.

• Frequency-domain input/output signals (in the iddata object format). These
are marked by a light green background color.

• Frequency functions (in the idfrd object format). These are estimates of the
system’s frequency function (frequency response), obtained either by special
data acquisition equipment (frequency analyzers) or as estimates from
measured input-output data. These data sets are marked by a light brown
background color.

You enter the models into the summary board by

• Opening earlier saved sessions

• Importing them from the MATLAB workspace

• Estimating them from data

Imports are handled under the Import models menu, while all the different
estimation schemes are under the Estimate menu. More about this is in
“Estimating Models” on page 2-16.

You can rearrange the data and model boards by dragging and dropping. More
boards open automatically when necessary or when asked for (under the
Options menu).

2 The Graphical User Interface

2-4

Working Data
All data sets and models are created from the working data set. This is the data
in the center of the ident window. To change the working data set, drag and
drop any data set from the data board on the working data icon.

Views
Below the data and model boards are buttons for various views. These control
what aspects of the data sets and models you would like to examine, and are
described in more detail in “Handling Data” on page 2-7 and in “Examining
Models” on page 2-31. To select a data set or a model so that its properties are
displayed, click its icon. A selected object is marked by a thicker line in the icon.
To clear it, click again. You can examine an arbitrary number of data/model
objects simultaneously. To obtain more information about an object,
double-click (or right-click or Ctrl+click) its icon.

Validation Data
The two model views Model Output and Model Residuals illustrate model
properties when applied to the validation data set. This is the set indicated in
the box below these two views. To change the validation data, drag and drop
any data set from the data board on the validation data icon.

It is good and common practice in identification to evaluate an estimated
model’s properties using a fresh data set, that is, one that was not used for the
estimation. It is thus good advice to let the validation data be different from the
working data, but they should of course be compatible.

System Identification Workflow
Start by importing data (under the Data menu); examine the data set using the
Data Views. You probably remove the means from the data and select subsets
of data for estimation and validation purposes, using the items in the
Preprocess menu. You then continue to estimate models, using the
possibilities under the Estimate menu, perhaps first doing a quick start. You
examine the obtained models with respect to your favorite aspects using
various Model Views. The basic idea is that any selected view shows the
properties of all selected models at any time. This function is live, so you can
check models and views in and out at will. You select/deselect a model by
clicking its icon.

The Big Picture

2-5

Inspired by the information you gain from the plots, you continue to try out
different model structures (model orders) until you find a model you are
satisfied with.

Session Management
Diary: It is easy to forget what you have been doing. By double-clicking a
data/model icon, you get a complete diary of how this object was created, along
with other key information. At this point you can also add comments and
change the name of the object and its color.

Layout: To have a good overview of the created models and data sets, it is good
practice to try rearranging the icons by dragging and dropping. In this way
models corresponding to a particular data set can be grouped together, etc. You
can also open new boards (Options -> Extra model/data boards) to further
rearrange the icons. These can be dragged across the screen between different
windows. The extra boards are also equipped with notepads for your comments.

Sessions: The model and data boards with all models and data sets, together
with their diaries, can be saved (under the File menu) at any point, and
reloaded later. This is the counterpart of save/load workspace in the
command-driven MATLAB. The four most recent sessions are listed under
File.

Cleanliness: The boards will hold an arbitrary number of models and data sets
(by creating clones of the board when necessary). However, you should clear
(delete) models and data sets that are no longer of interest. Do that by dragging
the object to the trash can icon. (Double-clicking the trash can opens it. You can
retrieve its contents.) Empty the trash can if you run into memory problems.

Warnings: Several messages from the underlying computations can show up
in warning dialog boxes. You can turn off these warnings using an item in the
Options menu.

Window Culture: Dialog box and plot windows are best managed by the GUI’s
close function (item under the File menu). Alternatively, select Close or
select/clear the corresponding View box. It is generally not recommended to
minimize the windows, but to use the GUI’s handling and window
management system instead.

2 The Graphical User Interface

2-6

Workspace Variables
The models and data sets created within the GUI are normally not available in
the MATLAB workspace. Indeed, the variables used during the system
identification sessions do not automatically end up in the workspace. You can,
however, export the variables to the workspace at any time, by dragging and
dropping the data or model icons to the To Workspace icon. The corresponding
workspace variables have the same name as the data or model you export. You
can work with the variables in the workspace by using any MATLAB
commands, and then you can import the modified versions back into the GUI.
Note that models and data are exported as the toolbox objects idmodel, idfrd,
and iddata. To learn how to extract information and work with these objects,
see “Data Representation” on page 3-19 and “Model Conversion” on page 4-11.

The GUI’s names of data sets and models are suggested by default procedures.
Normally, you can enter any other name of your choice at the time of creation
of the variable. You can change the names (after double-clicking the icon) at
any time. Unlike the workspace situation, two GUI objects can carry the same
name (i.e., the same string in their icons).

Context-Sensitive Help
The main ident window and the plot windows contain help topics under the
Help menu. In addition, every dialog box has a Help button that provides help
on that specific GUI.

Handling Data

2-7

Handling Data

Data Representation
In the System Identification Toolbox, signals and observed data are
represented as column vectors, for example:

The entry in row number k, i.e., u(k), will then be the signal’s value at sampling
instant number k. It is generally assumed in the toolbox that data is sampled
at equidistant sampling times, and the sampling interval T is supplied as a
specific argument.

For frequency-domain data, u(k) is interpreted as the Fourier transform of the
input at frequency w(k), where the frequency vector w is defined along with the
input.

The input to a system is generally denoted by the letter u and the output by y.
If the system has several input channels, the input data is represented by a
matrix, where the columns are the input signals in the different channels.

The same holds for systems with several output channels.

The observed input-output data record is represented in the System
Identification Toolbox by the iddata object that is created from the input and
output signals by

Data = iddata(y,u,Ts)

where Ts is the sampling time. For frequency-domain data, the object is defined
as

Data = iddata(y,u,Ts,'Domain','Frequency','Freq',w)

where w is the vector of frequencies.

u

u 1()
u 2()

…
…

u N()

=

u u1 u2 … um=

2 The Graphical User Interface

2-8

The iddata object can also be created from the input and output signals when
the data is inserted into the GUI.

Another data representation that can be used for model estimation is frequency
responses (frequency functions). This consists of the frequency response from
input to output G(w) (which the transfer function evaluated on the unit circle
or the imaginary axis). The frequency function G(w) is a complex number,
whose absolute value describes how a sinusoid of frequency w is amplified by
the system, and whose argument (phase) describes how the same signal is
shifted (phase-lagged) by the system. Frequency response data is contained in
the idfrd object:

Datfr = idfrd(G,w,Ts)

idfrd objects can also be created from the basic signals when they are imported
into the GUI.

Getting Data into the GUI
To bring data into the GUI, select the Import Data menu in the main GUI
window. This gives you three choices:

• Time-domain data

• Frequency-domain data (also covers frequency response data)

• Data object

Depending on what you choose, slightly different dialog box windows open.

For input/output data, the information about a data set that should be supplied
to the GUI is as follows:

• Input and output signals

• Name you give to the data set

• Sampling interval Ts (Ts = 0 denotes time continuous data, which then must
be frequency domain.)

For frequency-domain data, you also have to supply the

• Frequency vector

In addition to this mandatory information, you can add further properties that
will help in the bookkeeping:

Handling Data

2-9

• Starting time for the sampling (For frequency-domain data, enter instead
the frequency unit, Hz or rad/s.)

• Input and output channel names

• Input and output channel units

• Periodicity and intersample behavior of the input

• Data notes: These are notes for your own information and bookkeeping that
will follow the data and all models created from it.

Note that the sampling interval and the input intersample properties are
relevant also for frequency-domain data, because they determine how to
interpret the information in the data.

In the case of frequency-response data, you have to enter

• The response function, either as a vector of complex values or as amplitude
and phase

• The corresponding vector of frequencies

• The underlying sampling interval Ts. Use Ts = 0 if the response corresponds
to a continuous time system.

If the system has nu inputs and ny outputs, and the response is given at nf
frequencies, the response function is an ny-by-nu-by-nf 3-D array. In this case
also, you can supply bookkeeping information as above.

As you select the Import Data menu and choose the relevant item, a dialog box
opens where you can enter the information.

2 The Graphical User Interface

2-10

Dialog box for Importing Data into the GUI

For the time-domain data case, the fields are as follows:

Input and Output: Enter the variable names of the input and output
respectively. These should be variables in your MATLAB workspace, so you
might have to load some disk files first.

Actually, you can enter any MATLAB expressions in these fields, and they are
evaluated to compute the input and the output before the data is imported into
the GUI.

Data name: Enter the name of the data set to be used by the GUI. You can
change this name later on.

Handling Data

2-11

Starting time and Sampling interval: Fill these out for correct time and
frequency scales in the plots.

Clicking More expands the dialog box and provides additional options:

Channel names: Enter strings for the different input and output channel
names. Separate the strings by commas. The number of names must be equal
to the number of channels. If these entries are not filled out, default names, for
example, y1, y2, ..., u1, u2, ..., are used.

Channel units: Enter, in analogous format, the units in which the
measurements are made. These will follow all models built from data, but are
used only for plot information.

Period: If the input is periodic, enter the period length. Inf means a
nonperiodic input, which is the default.

Intersample: Choose the intersample behavior of the input as ZOH (zero-order
hold, i.e., the input signal is piecewise constant between the samples) or FOH
(first-order hold, i.e., the input signal is piecewise linear between the samples)
or BL (band-limited, i.e., the continuous-time input signal has no power above
the Nyquist frequency). ZOH is the default.

The box at the bottom is for Notes, where you can enter any text you want to
accompany the data for bookkeeping purposes.

Finally, select Import to insert the data into the GUI. When no more data sets
are to be inserted, select Close to close the dialog box. Selecting Reset will
empty all the fields of the box.

The procedure just described creates an iddata object, with all its properties
(or correspondingly an idfrd object, in the frequency-response data case). If
you already have an iddata or idfrd object available in the workspace, you can
import that directly by selecting the item Data Object in the Import Data
menu.

Taking a Look at the Data
The first thing to do after inserting the data set into the data board is to
examine it. Selecting Data View>Time plot shows a plot of the input and
output signals for the data sets that are selected. You select/clear the data sets
by clicking them. For multivariable data, you can choose the different
combinations of input and output signals under the Channel menu in the plot

2 The Graphical User Interface

2-12

window. Using the zoom function (drawing rectangles with the left mouse
button down), you can examine different portions of the data in more detail.

To examine the frequency contents of the data, select Data spectra under Data
Views in the ident window. The function is analogous to Time plot, but the
signals’ spectra are shown instead. By default the periodograms of the data are
shown, i.e., the absolute squares of the Fourier transforms of the data. You can
change the plot to any chosen frequency range and a number of different ways
of estimating spectra, using the Options menu in the spectra window.

The purpose of examining the data in these ways is to find out if there are
portions of the data that are not suitable for identification, if the information
contents of the data are suitable in the interesting frequency regions, and if the
data has to be preprocessed in some way before it can be used for estimation.

Another way of examining data is Frequency Function under Data Views in
the ident window. For a frequency response data set this shows the amplitude
and phase of the frequency function. For time- or frequency-domain
input/output data, this view shows the empirical transfer function estimate
(etfe) based on the data.

Preprocessing Data
The Preprocess menu has a number of methods to modify and transform the
data sets on the data board. The commands are applied to the currently
selected working data. The actual menu of choices depends on this data set. Not
all choices are applicable to all kinds of data sets.

Detrending
Detrending the data involves removing the mean values or linear trends from
the signals (the means and the linear trends are computed and removed from
each signal individually). You access this function under the Preprocess menu
by selecting Remove Means or Remove Trends. More advanced detrending,
such as removing piecewise linear trends or seasonal variations, cannot be
accessed within the GUI. We generally recommend that you remove at least
the mean values of the data before the estimation phase. There are, however,
situations when it is not advisable to remove the sample means. It could be, for
example, that the physical levels are built into the underlying model, or that
integrations in the system must be handled with the right level of the input
being integrated.

Handling Data

2-13

Selecting Data Ranges
It is often the case that the whole data record is not suitable for identification,
because of various undesired features (missing or bad data, outbursts of
disturbances, level changes, etc.), so that only portions of the data can be used.
In any case, it is advisable to select one portion of the measured data for
estimation purposes and another portion for validation purposes. Selecting
Preprocess > Select Range opens a dialog box that facilitates the selection of
different data portions. You can type in the ranges or mark them by drawing
rectangles with the mouse button down.

For multivariable data it is often advantageous to start by working with just
some of the input and output signals. Selecting Preprocess > Select Channels
allows you to select subsets of the inputs and outputs. This is done in such a
way that the input/output numbering and names remain consistent when you
evaluate data and model properties, for models covering different subsets of the
data.

Prefiltering
By filtering the input and output signals through a linear filter (the same filter
for all signals) you can, for example, remove drift and high-frequency
disturbances in the data, which could have a bad influence on the model. You
do this by selecting Preprocess > Filter in the main ident window. The dialog
box is similar to the one where you select data ranges in the time domain. You
mark with a rectangle in the spectral plots the intended passband or stop band
of the filter, you select a button to check whether the filtering has the desired
effect, and then you insert the filtered data into the GUI’s data board.

Prefiltering is a good way of removing high-frequency noise in the data, and is
also a good alternative to detrending (by cutting out low frequencies from the
passband). Depending on the intended model use, you can also make sure that
the model concentrates on the important frequency ranges. For a model that
will be used for control design, for example, the frequency band around the
intended closed-loop bandwidth is of special importance.

If you intend to use the data to build models both of the system dynamics and
the disturbance properties, we recommend that you do the filtering at the
estimation phase. Select Estimate > Parametric Models, and then select the
estimation Focus to be Filter. This opens the same filter dialog box as above.
The prefiltering, however, applies only for estimating the dynamics from input
to output. The disturbance model is determined from the original data.

2 The Graphical User Interface

2-14

Resampling
If the data turns out to be sampled too fast, it can be decimated; i.e., every kth
value is picked, after proper prefiltering (antialias filtering). This is obtained
using Preprocess > Resample.

You can also resample at a faster sampling rate by interpolation, using the
same command, and giving a resampling factor of less than 1.

Transform Data
Preprocess > Transform Data opens a dialog box that allows you to transform
between time- and frequency-domain input/output data and also to form
frequency-response data sets from input/output data.

Quickstart
Preprocess > Quickstart performs the following sequence of actions: It opens
the Time plot Data view, removes the means from the signals, and splits this
detrended data into two halves. The first one is made working data and the
second one becomes validation data. All three created data sets are inserted
into the data board.

Multiexperiment Data
The System Identification Toolbox allows the handling of data sets that contain
several different experiments. Both estimation and validation can be applied
to such data sets. This is quite useful to deal with experiments that have been
conducted at different occasions but describe the same system. It is also useful
to be able to keep together pieces of data that have been obtained by cutting out
informative pieces from a long data set. Multiexperiment data can be imported
and used in the GUI like any iddata object. Selecting a specific part of a
multiexperiment data set is done using Preprocess > Select Experiment. To
merge several data sets in the data board (obtained, for example, by cutting out
portions from other data sets) use Preprocess > Merge Experiment.

Checklist for Data Handling
• Insert data into the GUI’s data board.

• Plot the data and examine it carefully.

• Typically detrend the data by removing mean values.

Handling Data

2-15

• Select portions of the data for estimation and for validation. Drag and drop
these data sets to the corresponding boxes in the GUI.

Simulating Data
The GUI is intended primarily for working with real data sets, and does not
itself provide functions for simulating synthetic data. That has to be done in
command mode, and you can use your favorite procedure in Simulink, the
Signal Processing Toolbox, or any other toolbox for simulation, and then insert
the simulated data into the GUI as described above.

The System Identification Toolbox also has several commands for simulation.
For example, see the reference pages for idinput and sim for details.

The following example shows how the ARMAX model

is simulated with a random binary input u and Gaussian noise e.

% Create an ARMAX model
model1 = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
u = idinput(400,'rbs',[0 0.3]);
y = sim(model1,u,'noise');

The input, u, and the output, y, can now be imported into the GUI as data, and
the various estimation routines can be applied to them. If you also import the
simulation model model1 into the GUI, its properties can be compared to those
of the different estimated models.

To simulate a continuous-time state-space model

with the same input, and a sampling interval of 0.1 second, do the following in
the System Identification Toolbox:

y t() 1.5y t 1–()– 0.7y t 2–()+ =
u t 1–() 0.5u t 2–() e t() e t 1–()– 0.2e t 1–()+ + +

x· Ax Bu Ke+ +=
y Cx e+=

2 The Graphical User Interface

2-16

A = [-1 1;-0.5 0]; B = [1; 0.5]; C = [1 0]; D = 0; K = [0.5;0.5];
Model2 = idss(A,B,C,D,K,'Ts', 0) % Ts = 0 means continuous time
Data = iddata([],u);
Data.Ts = 0.1
y=sim(Model2,Data,'noise');

Estimating Models

The Basics
Estimating models from data is the central activity in the System
Identification Toolbox. It is also the one that offers the most possibilities and
thus is the most demanding one for the user.

All estimation routines are accessed from the Estimate menu in the ident
window. The models are always estimated using the data set that is currently
in the Working Data box.

You can distinguish between two different types of estimation methods:

• Direct estimation of the impulse or the frequency response of the system.
These methods are often called nonparametric estimation methods, and do
not impose any structure assumptions about the system other than that it is
linear.

• Parametric methods. A specific model structure is assumed, and the
parameters in this structure are estimated using data. This opens up a large
variety of possibilities, corresponding to the different ways of describing the
system. The most important model structures include the state-space
description, as well as several variants of difference equation descriptions.

Direct Estimation of the Impulse Response
A linear system can be described by the impulse response , with the property
that

The name derives from the fact that if the input u(t) is an impulse, i.e., u(t)=1
when t=0 and 0 when t>0, then the output y(t) will be . For a
multivariable system, the impulse response will be an ny-by-nu matrix

gk

y t() gku t k–()

k 1=

∞

∑=

y t() gt=
gk

Handling Data

2-17

where ny is the number of outputs and nu is the number of inputs. Its i-j
element thus describes the behavior of the ith output after an impulse in the
jth input.

Choosing menu item Estimate -> Correlation Model opens a dialog box that
lets you directly estimate the impulse response coefficients from the
input/output data using so called correlation analysis. The actual method is
described under the command impulse in Chapter 4, “Function Reference.” For
a quick action, you can also just type the letter c in the ident window. This is
the hot key for correlation analysis.

The resulting impulse response estimate is placed in the model board, under
the default name imp. (You can change the name by double-clicking the model
icon and then typing in the desired name in the dialog box that opens.)

The best way to examine the result is to select Transient Response under
Model Views. This gives a graph of the estimated response. This view offers a
choice between displaying the impulse or the step response. For a
multivariable system, the different channels, i.e., the responses from a certain
input to a certain output, are selected under the Channel menu.

The number of lags for which the impulse response is estimated, i.e., the length
of the estimated response, is determined as one of the options in the Transient
Response view.

Direct Estimation of the Frequency Response
The frequency response of a linear system is the Fourier transform of its
impulse response. This description of the system gives considerable
engineering insight into its properties. The relation between input and output
is often written

y(t)=G(z)u(t)+v(t)

where G is the transfer function and v is the additive disturbance. The function

as a function of (angular) frequency ω is then the frequency response or
frequency function. T is the sampling interval. If you need more details on the
different interpretations of the frequency response, see “The System
Identification Problem” on page 3-9 or any textbook on linear systems.

G eiωT()

2 The Graphical User Interface

2-18

You can estimate the system’s frequency response directly using spectral
analysis by selecting Estimate > Spectral Model and then clicking the
Estimate button in the dialog box that opens. The result is placed on the model
board under the default name spd. The best way to examine it is to plot it using
Frequency Response under Model Views. This view offers a number of
different options on how to graph the curves. You can also select the
frequencies for which to estimate the response by specifying the number of
frequencies and the spacing (linear or logarithmic) in the Spectral Model
dialog box. The spectral analysis command also estimates the spectrum of the
additive disturbance v(t) in the system description. You can examine this
estimated disturbance spectrum using Model Views > Noise Spectrum.

The spectral analysis estimate is stored as an idfrd object. If you need to work
further with the estimates, you can export the model to the MATLAB
workspace and retrieve the responses directly from this object or by using the
nyquist or bode command. See idfrd, bode, and nyquist in Chapter 4,
“Function Reference,” for more information. (Export a model by dragging and
dropping it over the To Workspace icon.)

A few options that affect the spectral analysis estimate can be set in the dialog
box. The most important choice is the frequency resolution. This is a number,
M (the size of the lag window), that affects the frequency resolution of the
estimates. Essentially, the frequency resolution is about 2 /M
radians/(sampling interval). The choice of M is a tradeoff between frequency
resolution and variance (fluctuations). A large value of M gives good resolution
but fluctuating and less reliable estimates. The default choice of M is good for
systems that do not have very sharp resonances and might have to be adjusted
for more resonant systems.

The options also offer a choice between the Blackman-Tukey windowing
method spa (which is the default); a variant with frequency dependent
resolution, spafdr; and a method based on smoothing direct Fourier
transforms, etfe. etfe has an advantage for highly resonant systems in that it
is more efficient for large values of M. It however has the drawbacks that it
requires linearly spaced frequency values, does not estimate the disturbance
spectrum, and does not provide confidence intervals. The actual methods are
described in more detail in Chapter 4, “Function Reference,” under spa,
spafdr, and etfe. To obtain the spectral analysis model for the current settings
of the options, you can just type the hot key s in the ident window.

π

Handling Data

2-19

Estimation of Simple Process Model
The System Identification Toolbox allows you to estimate simple
continuous-time process models characterizing the static gain, dominating
time constants, and possible time delays (dead time). They are variants of the
transfer function model structure

where K is the static gain, Tp1 is the time constant, and Td is the delay.

To estimate models of this kind, select Estimate > Process Models in the ident
window. This opens a dialog box as shown below.

Dialog box for Estimating Process Models

G s() K
1 sTp1+
----------------------e

sTd–
=

2 The Graphical User Interface

2-20

In this dialog box you enter how many time constants (poles) to estimate and
whether to include a time-delay term and an extra zero in the numerator of the
transfer function. You can also enforce an integration for self-regulating
processes. Moreover, there is a choice to force all time constants to be real or to
allow underdamped modes (complex poles).

The dialog box can handle an arbitrary number of inputs, but only one output
signal.

Some Further Estimation Options
The dialog box also has four menus that offer further options:

Disturbance Model allows you to include a first- or second-order model for the
additive disturbances to the output.

Focus allows you to choose between a frequency weighting that concentrates
on the model’s prediction or simulation performance. Another alternative is
prefiltering, which was described in “Prefiltering” on page 2-13.

The InitialState menu has options to estimate the initial state or to fix it to
zero. The value Auto makes an automatic choice among these options.

The Covariance menu allows the choice between Estimate and None.
Normally, the covariance of the model is estimated, so that various uncertainty
measures can be displayed in the plots.

Initial Parameter Values and Parameter Bounds
If no prior knowledge is available about the parameters, a startup routine is
invoked to come up with initial parameter estimates. These are further
iterated upon to give the best possible model fit to the data. The text AUTO is
used to indicate that no initial guess is provided and an automatic process is
invoked to estimate the initial values. If no qualified guess is available, this is
usually a better alternative than entering an ad hoc value. However, if the
estimation process gives parameter values that seem unreasonable, it might be
worthwhile to try out various initial guesses and upper and/or lower limits of
the parameters. Note that if you estimate a time delay, you must always
provide an upper limit for the delay in order to secure efficient algorithms. The
default value of this upper bound is 30 sampling intervals.

Handling Data

2-21

Iteration Information
The dialog box also provides information about the progress of the iterative
optimization of the fit between the data and the model. The iteration number,
the current fit information, and the improvement in fit (in percent) compared
to the previous iteration are shown. You can also abort the iterations and save
the current model, after the current iteration is finished. You access
parameters that affect the minimization process by clicking Options.

Estimation of Parametric Models
The System Identification Toolbox supports a wide range of model structures
for linear systems. Except for process models, they are all accessed by
Estimate > Parametric Models in the ident window. This opens the
Parametric Models dialog box, which contains the basic dialog box for all
parametric estimation, as shown below.

Dialog box for Estimating Parametric Models

The basic function of this box is as follows:

2 The Graphical User Interface

2-22

As you select Estimate, a model is estimated from the working data. The
structure of this model is defined by the Structure menu together with the
Orders edit box. It is given a name, which is written in the Name edit box.

The GUI will always suggest a default model name in the Name box, but you
can change it to any string before clicking Estimate. (If you intend to export
the model later, avoid spaces in the name.)

The interpretation of the model structure information (typically integers) in
the Orders box depends on the structure selected in the menu. This covers,
typically, six choices:

• ARX models

• ARMAX model

• Output-error (OE) models

• Box-Jenkins (BJ) models

• State-space models

• Model structure defined by initial model (user-defined structures)

You can fill out the Orders box yourself at any time, but for assistance you can
select Order Editor. This opens another dialog box, depending on the chosen
structure, in which you can enter the desired model order and structure
information in a simpler fashion.

You can also enter the name of a MATLAB workspace variable in the Orders
edit box. This variable should have a value that is consistent with the
necessary orders for the chosen structure.

Note For the state-space structure and the ARX structure, you can enter
several orders and combinations of orders. Then all corresponding models are
compared and displayed in a special dialog box for you to select suitable ones.
This could be a useful tool to select good model orders. This option is described
in more detail later in this section. When it is available, an Order selection
button is visible.

Estimation Method
A common method of estimating the parameters is the prediction error
approach, where the parameters of the model are chosen so that the difference

Handling Data

2-23

between the model’s predicted output and the measured output is minimized.
This method is available for all model structures. Except for the ARX case, the
estimation involves an iterative numerical search for the best fit.

Some information from this search is given online in the dialog box. By clicking
Iteration options, you get access to a number of options that govern the search
process. (See “Algorithm Properties” on page 4-22.)

For some model structures (the ARX model, and black-box state-space models)
methods based on correlation are also available — Instrumental Variable (IV)
and Subspace (N4SID) methods. The choice of methods is made in the
Parametric Models dialog box.

The dialog box also has three menus that offer further options. Focus allows
you to choose between a frequency weighting that concentrates on the model’s
prediction or simulation performance. Another alternative is prefiltering,
which was described in “Prefiltering” on page 2-13. The InitialState menu has
options to estimate the initial state or to fix it to zero. The value Auto makes
an automatic choice among these options. Finally, the Covariance menu
allows the choice between Estimate and None. Normally the covariance of the
model is estimated, so that various uncertainty measures can be displayed in
the plots. However, for high-order state-space models estimated by N4SID, or
large multivariable ARX models, the computation of the covariance matrix can
take quite a long time. Choosing Covariance: None greatly reduces the
computation time.

Resulting Models
The estimated model is inserted into the GUI’s model board. You can then
examine its various properties and compare them with other models’ properties
using the Model Views plots. More about that is in “Examining Models” on
page 2-31.

To take a look at the model itself, double-click the model’s icon (or right-click
or Ctrl+click). The Data/Model Info window that opens gives you information
about how the model was estimated. You can also select the Present button,
which lists the model and its parameters with estimated standard deviations
in the MATLAB Command Window.

If you need to work further with the model, you can export it by dragging and
dropping it over the To Workspace icon, and then apply any MATLAB and
toolbox commands to it. (See, in particular, the commands ssdata, tfdata, d2c,
and get in Chapter 4, “Function Reference.”)

2 The Graphical User Interface

2-24

Which Structure and Method to Use
There is no simple way to find the best model structure; in fact, for real data,
there is no such thing as a best structure. Some routes to find good and
acceptable models are described in “A Startup Identification Procedure” on
page 1-15. It is best to be generous at this point. It often takes just a few
seconds to estimate a model, and, using the different validation tools described
in the next section, you can quickly find out if the new model is any better than
the ones you had before. There is often a significant amount of work behind the
data collection, and spending a few extra minutes trying out several different
structures is usually worthwhile.

ARX Models

Structure
The most used model structure is the simple linear difference equation

which relates the current output y(t) to a finite number of past outputs y(t-k)
and inputs u(t-k).

The structure is thus entirely defined by the three integers na, nb, and nk. na
is equal to the number of poles and nb 1 is the number of zeros, while nk is the
pure time delay (the dead time) in the system. For a system under
sampled-data control, typically nk is equal to 1 if there is no dead time.

For multiinput systems, nb and nk are row vectors, where the ith element gives
the order/delay associated with the ith input.

Entering the Order Parameters
The orders na, nb, and nk can either be directly entered into the Orders edit
box in the Parametric Models window, or selected using the menus in the
Order Editor.

Estimating Many Models Simultaneously
By entering any or all of the structure parameters as vectors, using the
MATLAB colon notation, such as na=1:10, you define many different
structures that correspond to all combinations of orders. When you select

y t() a1y t 1–() … anay t na–() =+ + +

b1u t nk–() … bnbu t nk– nb– 1+()+ +

Handling Data

2-25

Estimate, models corresponding to all these structures are computed. A special
plot window then opens that shows the fit of these models to validation data.
By clicking in this plot, you can enter any models of your choice into the model
board.

Multiinput models: For multiinput models you can enter each of the input
orders and delays as a vector. The number of models resulting from all
combinations of orders and delays can, however, be very large. As an
alternative, you can enter one vector (such as nb=1:10) for all inputs and one
vector for all delays. Then only models that have the same orders and delays
from all inputs are computed.

Estimation Methods
There are two methods to estimate the coefficients a and b in the ARX model
structure:

Least Squares: Minimizes the sum of squares of the right side minus the left
side of the expression above, with respect to a and b. Select ARX in the Method
box.

Instrumental Variables: Determines a and b so that the error between the
right and left sides becomes uncorrelated with certain linear combinations of
the inputs. Select IV in the Method box.

The methods are described in more detail in the reference pages for arx and
iv4.

Multioutput Models
For a multioutput ARX structure with ny outputs and nu inputs, the difference
equation above is still valid. The only change is that the coefficients a are
ny-by-ny matrices and the coefficients b are ny-by-nu matrices.

The orders [NA NB NK] define the model structure as follows:

NA: an ny-by-ny matrix whose i-jth entry is the order of the polynomial (in the
delay operator) that relates the jth output to the ith output

NB: an ny-by-nu matrix whose i-jth entry is the order of the polynomial that
relates the jth input to the ith output

NK: an ny-by-nu matrix whose i-jth entry is the delay from the jth input to the
ith output

The Order Editor dialog box allows the choices

2 The Graphical User Interface

2-26

NA = na∗ones(ny,ny)
NB = nb∗ones(ny,nu)
NK = nk∗ones(ny,nu)

where na, nb, and nk are chosen by the menus.

For custom order choices, construct a matrix [NA NB NK] in the MATLAB
Command Window and enter the name of this matrix in the Orders edit box in
the Parametric Models window.

Note that the possibility to estimate many models simultaneously is not
available for multioutput ARX models.

See “Defining Model Structures” on page 3-39 for more information on
multioutput ARX models.

ARMAX, Output-Error (OE), and Box-Jenkins (BJ)
Models
There are several elaborations of the basic ARX model, where different
disturbance models are introduced. These include well-known model types,
such as ARMAX, output-error (OE), and Box-Jenkins (BJ).

The General Structure
A general input-output linear model for a single-output system with input u
and output y can be written

Here ui denotes input #i, and A, Bi, C, D, and Fi, are polynomials in the shift
operator (z or q). (Don’t be intimidated by this: It is just a compact way of
writing difference equations; see below.)

You define the general structure by giving the time delays nk and the orders of
these polynomials (i.e., the number of poles and zeros of the dynamic model
from u to y, as well as of the disturbance model from e to y).

Special Cases
Most often the choices are confined to one of the following special cases:ARX:

A q()y t() Bi q() Fi q()]⁄ ui t nki–() C q() D q()]⁄ e t()[+[

i 1=

nu

∑=

A q()y t() B q()u t nk–() e t()+=

Handling Data

2-27

ARMAX:

OE: (output-error)

BJ: (Box-Jenkins)

The shift operator polynomials are just compact ways of writing difference
equations. For example, the ARMAX model in longhand would be

Note that A(q) corresponds to poles that are common to the dynamic model and
the disturbance model (useful if disturbances enter the system close to the
input). Likewise determines the poles that are unique for the dynamics
from input # i, and D(q) the poles that are unique for the disturbances.

The reason for introducing all these model variants is to provide for flexibility
in the disturbance description and to allow for common or different poles
(dynamics) for the different inputs.

Entering the Model Structure
Use the Structure menu in the Parametric Models dialog box to choose
among the ARX, ARMAX, output-error, and Box-Jenkins structures. Note that
if the working data set has several outputs, only the first choice is available.
For time series (data with no input signal) only AR and ARMA are available
among these choices. These are the time-series counterparts of ARX and
ARMAX.

You select the orders of the polynomials using the menus in the Order Editor
dialog box, or by directly entering them in the Orders edit box in the
Parametric Models window. When the order editor is open, the default orders,
entered as you change the model structure, are based on previously used
orders.

Estimation Method
You estimate the coefficients of the polynomials using a prediction
error/maximum likelihood method, by minimizing the size of the error term e
in the expression above. Several options govern the minimization procedure.
You access these by selecting Iteration Options in the Parametric Models
window.

A q()y t() B q()u t nk–() C q()e t()+=

y t() B q() F q()⁄[]u t nk–() e t()+=

y t() B q() F q()⁄[]u t nk–() C q() D q()⁄[]e t()+=

y t() a1y t 1–() … anay t na–()+ + + b1u t nk–() …+ +=

bnbu t nk– nb– 1+() e t() c1e t 1–() … cnce t nc–()+ + + +

Fi q()

2 The Graphical User Interface

2-28

The algorithms are further described in Chapter 4, “Function Reference,”
under armax, Algorithm Properties, bj, oe, and pem. See also “Parametric
Model Estimation” on page 3-28 and “Defining Model Structures” on page 3-39.

Note These model structures are available only for the scalar output case.
For multioutput models, the state-space structures offer the same flexibility.
Also note that it is not possible to estimate many different structures
simultaneously for input-output models.

State-Space Models

The Model Structure
The basic state-space model in innovations form can be written

x(t+1) = A x(t) + B u(t) + K e(t)

y(t) = C x(t) + D u(t) + e(t)

The System Identification Toolbox supports two kinds of parameterizations of
state-space models: black-box, free parameterizations and parameterizations
custom-made for the application. The latter are discussed in “User-Defined
Model Structures” on page 2-30. First the black-box case is described.

Entering Black-Box State-Space Model Structures
The most important structure index is the model order, i.e., the dimension of
the state vector x.

Use the menu in the Order Editor to choose the model order, or enter it
directly into the Orders edit box in the Parametric Models window. You can
further affect the chosen model structure:

• Fixing K to zero gives an output-error method; i.e., the difference between
the model’s simulated output and the measured one is minimized. Formally,
this corresponds to an assumption that the output disturbance is white
noise. This is done by the menu under Disturbance Model.

• The delays from the input can be chosen independently for each input. It will
be a row vector nk, with nu entries. When the delay is larger than or equal to
one, the D-matrix in the discrete-time model is fixed to zero. For physical

Handling Data

2-29

systems without a pure time delay that are driven by piecewise constant
inputs, nk = 1 is a natural assumption. This is also the default. You can set
the delays nk either in the order editor or directly in the Orders box as
numbers in square brackets.

• The initial state X0 can either be estimated, set to zero, or backcast. This is
handled by the Initial State menu.

Estimating Many Models Simultaneously
If you enter a vector for the model order, using the MATLAB colon notation
(such as 1:10), all indicated orders are computed using a preliminary method.
You can then enter models of different orders into the model board by clicking
in a special graph that contains information about the models.

Estimation Methods
There are two basic methods for the estimation.

pem: Standard prediction error/maximum likelihood method, based on iterative
minimization of a criterion. The iterations are started up at parameter values
that are computed from n4sid. The parameterization of the matrices A, B, C,
D, and K is free. The search for minimum is controlled by a number of options.
These are accessed from the Option button in the Iteration Control window.

n4sid: Subspace-based method that does not use iterative search. The quality
of the resulting estimates can significantly depend on options N4Weight and
N4Horizon. You choose these options in the Order Editor dialog box. If you
enter N4Horizon with several rows, the models corresponding to the horizons
in each row are examined separately using the working data. The best model
in terms of prediction (or simulation, if K = 0) performance is selected. A figure
is shown that illustrates the fit as a function of the horizon. If you leave the
N4Horizon box empty, a default choice is made.

Note When you use Order Selection, the default N4Horizons will be chosen
according to the highest order you asked for. The chosen values will be
displayed in the Order Editor. If you reestimate the model with the same order
later, other default N4Horizons may be used, resulting in a slightly different
model.

See the reference pages for n4sid and pem for more information.

2 The Graphical User Interface

2-30

User-Defined Model Structures

State-Space Structures
The System Identification Toolbox supports user-defined linear state-space
models of arbitrary structure. Using the idss model structure, known and
unknown parameters in the A, B, C, D, K, and X0 matrices can be easily defined
both for discrete- and continuous-time models. The idgrey object allows you to
use a completely arbitrary grey box structure, defined by an M-file. The model
object properties can be easily manipulated. See the reference pages for idss
and idgrey and “Structured State-Space Models with Free Parameters: the
idss Model” on page 3-48.

To use these structures in conjunction with the GUI, just define the
appropriate structure in the MATLAB Command Window. Then use the
Structure menu to select By Initial Model, enter the variable name of the
structure in the Initial Model edit box in the Parametric Models window, and
select Estimate.

Any Model Structure
Arbitrary model structures can be defined using the System Identification
Toolbox model objects:

• idpoly: Creates input-output structures for single-output models

• idss: Creates linear state-space models with arbitrary free parameters

• idgrey: Creates completely arbitrary parameterizations of linear systems

• idproc: Creates simple process models

• idarx: Creates multivariable ARX structures

To work with any such defined or estimated model in the GUI, use the
Structure menu to select By Initial Model, enter the variable name of the
structure in the Initial Model edit box in the Parametric Models window, and
select Estimate. Then the parameters of the model structure are adjusted to
the chosen working data set. The method is a standard prediction
error/maximum likelihood approach that iteratively searches for the minimum
of a criterion. You access the options that govern this search by the Iteration
Options button in the Parametric Models window.

The name of the initial model must be a variable either in the workspace or in
the model board. In the latter case you can just drag and drop it over the
Orders/Initial model box.

Examining Models

2-31

Examining Models
Estimating a model is just a first step. Now you must examine it, compare it
with other models, and test it with new data sets. You do this primarily using
the six Model Views functions at the bottom of the main ident window:

• Frequency response

• Transient response

• Poles and zeros

• Noise spectrum

• Model output

• Model residuals

In addition, you can double-click the model’s icon to get Text Information
about the model. Finally, you can export the model to the MATLAB workspace
and use any commands for further analysis and model use.

Views and Models
If a certain View window is open (selected), then all models in the model
summary board that are selected will be represented in the window. You can
click in and out of the curves in the View window by selecting and clearing the
models in an online fashion. You select and clear a model by clicking its icon. A
selected model is marked with a thicker line in its icon.

On color screens, the curves are color coded along with the model icons in the
model board. Before printing a plot it might be a good idea to differentiate the
line styles (menu item under Style). This could also be helpful on black and
white screens.

Note that models that are obtained by spectral analysis only can be
represented as frequency response and noise spectra, and that models
estimated by correlation analysis only can be represented as transient
response.

About Plot Views
The six views all give similar plot windows, with several common features.
They have a common menu bar, which covers some basic functions.

2 The Graphical User Interface

2-32

First of all, note that there is a zoom function in the plot window. By dragging
with the left mouse button down, you can draw rectangles, which are enlarged
when the mouse button is released. Double-clicking restores the original axis
scales. For plots with two axes, the x-axes scales are locked to each other. A
single left-click zooms in by a factor of two, while the middle button zooms out.
The zoom function can be deactivated if desired. Just select Zoom under Style.

Second, pointing to any curve in the plot and Shift-clicking identifies the curve
with the model name and current coordinates.

The common menu bar covers the following functions:

File
File allows you to copy the current figure to another standard MATLAB figure
window. This might be useful, for example, when you intend to print a
customized plot. Other File items cover printing the current plot and closing
the plot window.

Options
Options covers actions for setting the axes scaling. This menu item also
provides choices that are specific for the current plot window, such as a choice
between step response or impulse response in the Transient response
window.

An important option is the possibility of showing confidence intervals. Each
estimated model property has some uncertainty. This uncertainty can be
estimated from data. When you select Show confidence intervals, a
confidence region around the nominal curve (model property) is marked (by
dash-dotted lines). You can also set the level of confidence using this menu
item.

Note Confidence intervals are supported for most models and properties,
except models estimated using etfe and the k-step-ahead prediction property.
For n4sid, the covariance properties are actually not fully known. The
Cramer-Rao lower limit for the covariance matrix is therefore used instead.

Examining Models

2-33

Style
The Style menu gives access to various ways of affecting the plot. You can add
gridlines, turn the zoom on and off, and change the line styles. The menu also
covers a number of other options, like choice of units and scale for the axis.

Channel
For multivariate systems, you can choose which input-output channel to
examine. The current choice is marked in the figure title.

Help
The Help menu has a number of items that explain the plot and its options.

Frequency Response and Disturbance Spectra
All linear models that are estimated can be written in the form

y(t)=G(z)u(t)+v(t)

where G(z) is the (discrete-time) transfer function of the system and v(t) is an
additive disturbance. The frequency response or frequency function of the

system is the complex-valued function viewed as a function of angular
frequency ω.

This function is often graphed as a Bode diagram. That is, the logarithm of the

amplitude (the absolute value) of and the phase (the argument) of

 are plotted against the logarithm of frequency ω in two separate plots.
These plots are obtained by selecting Frequency Response under Model
Views in the main ident window.

You can plot the estimated spectrum of the disturbance v as a power spectrum
by choosing Noise Spectrum under Model Views.

If the data is a time series y (with no input u), then the spectrum of y is plotted
under the Noise Spectrum, and no frequency functions are given.

Transient Response
You can get insight into a model’s dynamic properties by looking at its step
response or impulse response. This is the output of the model when the input

G eiωT()

G eiωT()

G eiωT()

2 The Graphical User Interface

2-34

is a step or an impulse. These responses are plotted when you select Transient
Response under Model Views.

It is informative to compare the transient response of a parametric model with
the one that was estimated using correlation analysis. If there is good
agreement between the two, you can be confident that some correct features
have been picked up. It is useful to check the confidence intervals around the
responses to see what “good agreement” could mean quantitatively.

Many models provide a description of the additive disturbance v(t):

v(t)=H(z)e(t)

Here H(z) is a transfer function that describes how the disturbance v(t) can be
thought of as generated by sending white noise e(t) through it. To display the
properties of H, you can choose channels (in the Channel menu) that have
noise components as inputs. The names of these channels are like e@ynam, for
the noise component of e that directly affects the output channel with name
ynam.

Poles and Zeros
The poles of a system are the roots of the denominator of the transfer function
G(z), while the zeros are the roots of the numerator. In particular the poles
have a direct influence on the dynamic properties of the system.

You plot the poles and zeros of G (and H) by choosing Poles and Zeros under
Model Views.

It is useful to turn on the confidence intervals in this case. They will reveal
which poles and zeros could cancel each other (their confidence regions
overlap). That is an indication that you could use a lower order dynamic model.

For multivariable systems, it is the poles and zeros of the individual
input/output channels that are displayed. To obtain the so-called transmission
zeros, you must export the model and then apply the command tzero. (This
requires the Control System Toolbox.)

Compare Measured and Model Outputs
A good way of obtaining insight into the quality of a model is to simulate the
model with the input from a fresh data set and compare the simulated output
with the measured one. This gives a good feel for which properties of the system
have been picked up by the model, and which have not.

Examining Models

2-35

You obtain this test by selecting Model Output under Model Views. Then the
data set currently in the Validation Data box is used for the comparison. The
fit is also displayed. This is computed as the percentage of the output variation
that is reproduced by the model. So a model that has a fit of 0% gives the same
mean square error as just setting the model output to the mean of the
measured output.

If the model is unstable, or has integration or very slow time constants, the
levels of the simulated and the measured output can drift apart, even for a
model that is quite good (at least for control purposes). Then it is a good idea to
evaluate the model’s predicted output rather than the simulated one. With a
prediction horizon of k, the k-step-ahead predicted output is obtained as
follows:

The predicted value y(t) is computed from all available inputs
(used according to the model) and all available outputs up to time
t-k, . The simulation case, where no past outputs at all are
used, thus formally corresponds to k=∞. To check whether the model has
picked up interesting dynamic properties, it is wise to let the predicted time
horizon (kT, T being the sampling interval) be larger than the important
time constants.

Note that different models use the information in past output data in their
predictors in different ways, depending on the disturbance model. For example,
so-called output-error models (obtained by fixing K to zero for state-space
models and setting na=nc=nd=0 for polynomial models) do not use past outputs
at all. The simulated and the predicted outputs, for any value of k, thus
coincide.

The character of the comparison depends on the type of validation data. For
frequency-domain input/output validation data, the amplitudes of the
measured output signal are shown together with the models’ simulated output
frequency response (which is the product of the input frequency domain signal
and the model frequency response). In this case, the predictions are not
applicable. For frequency-response data the amplitude of the frequency
response data is compared to the models’ frequency responses. Note that even
though just the amplitudes are shown in the plots, the figure of fit refers to the
distance between the functions as complex variables.

u s() s t≤()

y s() s t k–≤()

2 The Graphical User Interface

2-36

Residual Analysis
In a model

the noise source e(t) represents that part of the output that the model could not
reproduce. It gives the left-overs, or the residuals. For a good model, the
residuals should be independent of the input. Otherwise, there would be more
in the output that originates from the input and that the model has not picked
up.

To test this independence, compute the cross-correlation function between
input and residuals by selecting Model Residuals under Model Views. It is
wise to also display the confidence region for this function. For an ideal model
the correlation function should lie entirely between the confidence lines for
positive lags. If, for example, there is a peak outside the confidence region for
lag k, this means that there is something in the output y(t) that originates from
u(t-k) and that has not been properly described by the model. The test is carried
out using the validation data. If these were not used to estimate the model, the
test is quite tough. See also “Model Structure Selection and Validation” on
page 3-70.

For a model also to give a correct description of the disturbance properties (i.e.,
the transfer function H), the residuals should be mutually independent. This
test is also carried out by the view Model Residuals, by displaying the
autocorrelation function of the residuals (excluding lag zero, for which this
function by definition is 1). For an ideal model, the correlation function should
be entirely inside the confidence region.

For frequency-domain validation data, the power spectrum of the residuals is
shown, as well as the amplitude of the estimated transfer function from inputs
to residuals.

Text Information
Double-clicking (right mouse button or Ctrl+click) the model icon opens a
Data/Model Info dialog box containing some basic information about the
model. It also has a diary of how the model was created, along with the notes
that originally were associated with the estimation data set. At this point you
can do a number of things.

y t() G z()u t() H z()e t()+=

Examining Models

2-37

Present
Clicking the Present button displays details of the model in the MATLAB
Command Window. The model’s parameters along with estimated standard
deviations are displayed, as well as some other notes.

Modify
You can type any text you want anywhere in the Diary and Notes field of the
dialog box. You can also change the name of the model by editing the text field
with the model name. The color associated with the model in all plots can also
be edited. Enter RGB values or a color name (such as 'y') in the corresponding
box.

LTI Viewer
If you have the Control System Toolbox, you will see a To LTI Viewer icon in
the main window. Dragging and dropping a model onto this icon opens the LTI
Viewer. This viewer handles an arbitrary amount of models, but it requires all
of them to have the same number of inputs and outputs. Note that the LTI
viewer is not fully live when you click in and out of the models on the model
board. Instead, the LTI viewer has its own interface for dealing with models
and channels (right-click in the plot).

Further Analysis in the MATLAB Workspace
You can export any model or data object to the MATLAB workspace by
dragging and dropping its icon over the To Workspace box in the ident
window.

Once you have exported the model to the workspace, there are many commands
by which you can further transform it, examine it, and convert it to other
formats for use in other toolboxes. Some examples of such commands are as
follows:

d2c Transform to continuous time

ss, idss, ssdata Convert to state-space representation

tf, tfdata Convert to transfer function form

zpk, zpkdata Convert to zeros and poles

2 The Graphical User Interface

2-38

Note that the commands ss, tf, and zkp transform the model to the Control
System Toolbox’s LTI models. Moreover, if you have that toolbox, many of its
LTI commands can be applied directly to the model objects of the System
Identification Toolbox. See “Connections Between the Control System Toolbox
and the System Identification Toolbox” on page 3-96.

If you need to prepare specialized plots that are not covered by the Views, all
the System Identification Toolbox commands for computing and extracting
simulations, frequency functions, zeros and poles, etc., are also available. See
Chapter 3, “Tutorial” and Chapter 4, “Function Reference.”

Additional GUI Topics

2-39

Additional GUI Topics
This section discusses a number of different topics.

Mouse Buttons and Hot Keys
The GUI uses three mouse buttons. If you have fewer buttons on your mouse,
the actions associated with the middle and right mouse buttons are obtained
by Shift+click, Alt+click, or Ctrl+click, depending on the computer.

The Main ident Window
In the main ident window the mouse buttons are used to drag and drop, to
select/clear models and data sets, and to double-click to get text information
about the object. You can use the left mouse button for all of this. A certain
speedup is obtained if you use the left button for dragging and dropping, the
middle one (equivalent to Shift-click) for selecting models and data sets, and
the right one (equivalent to Ctrl-click) for double-clicking. Actually, for the
right mouse button, a single-click is sufficient. On a slow machine a
double-click from the left button might not be recognized.

The ident window also has a number of hot keys. By pressing a keyboard letter
when the ident window is the current window, you can quickly activate some
functions. These are

• s: Computes the Spectral Analysis Model using the current option settings.
(You can change options in the dialog box window that opens when you
choose Estimate > Spectral Model.)

• c: Computes Correlation Analysis Model using the current option settings.

• q: Computes the models associated with Quickstart.

• d: Opens a dialog box for importing data objects.

Plot Windows
In the various plot windows the action of the mouse buttons depends on
whether zoom is activated or not.

If zoom is active. The left and middle mouse buttons are associated with the
zoom functions, as in MATLAB. The left button zooms in and the middle one
zooms out. In addition, you can draw rectangles with the left button to define

2 The Graphical User Interface

2-40

the area to be zoomed. Double-clicking restores the original plot. The right
mouse button is associated with special GUI actions that depend on the
window. In the View plots, the right mouse button is used to identify the
curves. Point and click a curve, and a box displays the name of the model/data
set that the curve is associated with, and also the current coordinate values for
the curve. In the Model Selection plots, the right mouse button is used to
inspect and select the various models. In the Prefilter and Data Range plots,
rectangles are drawn with this mouse button down to define the selected range.

If zoom is not active. The special GUI functions just mentioned are obtained
by any mouse button.

The zoom is activated and deactivated using the Style menu. The default
setting differs between the plots.

Note Don’t activate the zoom from the command line! That will destroy the
special GUI functions. (If you happen to do so anyway, quit the window and
open it again.)

Troubleshooting in Plots
The function Auto-range under the Options menu sets automatic scales to the
plots. It is also a good function to invoke when you think that you have lost
control over the curves in the plot. (This might happen, for example, if you zoom
in a portion of a plot and then change the data of the plot.)

If the view plots don’t respond the way you expect them to, you can always quit
the window and open it again. By quit here is meant using the underlying
window system’s own quitting mechanism, which is called different things in
the different platforms. The normal way to close a window is to use the Close
function under the File menu or to clear the corresponding check box.

Layout Questions and idprefs.mat
The GUI comes with a number of preset defaults. These include the window
sizes and positions, the colors of the different models, and the default options
in the different View windows.

You can change the window sizes and positions, as well as the options in the
plot windows, in the standard way. If you want the GUI to start with your

Additional GUI Topics

2-41

current window layout and current plot options, select Options > Save
preferences in the main ident window. This saves the information in a file
idprefs.mat. This file also stores information about the four most recent
sessions with ident. This allows the session File menu to be correctly
initialized. The session information is automatically stored upon exit. The
layout and preference information is only saved when you select the indicated
option.

The file idprefs.mat is created the first time you close the GUI. It is stored in
the same directory as your startup.m file by default. If this default does not
work, you are prompted for a directory to store the file. You can ignore this, but
then you cannot save session and preference information.

To change or select a directory for idprefs.mat, use the command midprefs.

To change model colors and default options to your own customized choices,
make a copy of the M-file idlayout.m to your own directory (which should be
before the basic ident directory in the MATLABPATH), and edit it according to its
instructions.

Customized Plots
If you need to prepare hardcopies of your plots with specialized texts, titles, and
so on, make a copy of the figure first, using File > Copy Figure. This produces
a copy of the current figure in a standard MATLAB figure format.

For plots that are not covered by the View windows (e.g., Nyquist plots), you
have to export the model to the MATLAB workspace and construct the plots
there.

What You Cannot Do Using the GUI
The GUI enables you to examine the data, estimate models, and evaluate and
compare models. However, you cannot do the following in the GUI:

• Generate (simulate) data sets

• Create models (by methods other than estimation)

2 The Graphical User Interface

2-42

• Manipulate and convert models

• Use recursive (online) estimation algorithms

To see what M-files are available in the toolbox for these functions, see
“Toolbox Commands” on page 3-3, as well as “Simulation and Prediction” on
page 4-4, “Model Structure Creation” on page 4-8, “Manipulating Model
Structures” on page 4-10, “Model Conversion” on page 4-11, and “Recursive
Parameter Estimation” on page 4-8.

Note that at any point you can export a data set or a model to the MATLAB
workspace (by dragging and dropping its icon on the To Workspace icon).
There you can modify and manipulate it any way you want and then import it
back into ident. You can, for example, construct a continuous-time model from
an estimated discrete-time one (using d2c), and then use the model views to
compare the two.

3

Tutorial

Overview (p. 3-2) Quick look at the contents of this tutorial

Toolbox Commands (p. 3-3) Overview of the organization of system identification
commands

An Introductory Example to Command
Model (p. 3-5)

Worked out example that uses only the command line

The System Identification Problem
(p. 3-9)

Discussion of the basic issues in system identification

Data Representation and Nonparametric
Model Estimation (p. 3-19)

Various ways to represent data

Parametric Model Estimation (p. 3-28) Estimating models using parametric methods

Defining Model Structures (p. 3-39) Overview of available model structures

Examining Models (p. 3-57) How to plot the responses and further examine
estimated models

Model Structure Selection and Validation
(p. 3-70)

Discussion of the process used to select model structure,
and how to validate an identified model

Dealing with Data (p. 3-81) Collection of topics about data preprocessing, such as
detrending and filtering

Recursive Parameter Estimation (p. 3-86) Overview of the algorithms used in recursive
estimation

Miscellaneous Topics (p. 3-93) Various topics, including time-series modeling and
connections between the System Identification Toolbox
and the Control System Toolbox

3 Tutorial

3-2

Overview
This chapter has three purposes:

• It provides an overview of system identification theory, the basic models and
disturbance descriptions used, and the character of the basic algorithms. It
also provides some practical advice for a number of issues that are essential
for a successful application.

• It describes the commands and objects of the System Identification Toolbox,
their syntax and use. If you primarily use the graphical user interface (GUI),
you will not have to bother about these aspects.

• It describes the commands that are not reached from the GUI, that is,
simulation, the recursive algorithms, and more advanced model structure
definitions.

Toolbox Commands

3-3

Toolbox Commands
It might be useful to recognize several layers of the System Identification
Toolbox. Initially concentrate on the first layer of basic tools, which contains
the commands from the System Identification Toolbox that any user must
master. You can proceed to the next levels whenever an interest or the need
from the applications warrants it. The layers are described in the following
paragraphs:

Layer 0: Help Functions. Help ident gives an overview of available commands.
idhelp gives access to a micromanual of command-line help, with several
subhelps like idhelp evaluate, etc. There is also a command advice that can
be applied to any data set and any model.

advice(data)
advice(model)

This gives text information on the screen about the quality of the data/model
and some advice on how to proceed.

Layer 1: Basic Tools for Estimating Black-Box Models. The first layer contains the basic
tools for estimating models from measured data. It is necessary to know the
basics of the data representation and the simple commands to build and
evaluate black-box models. The commands are

The corresponding background is given in the next few sections of this tutorial.

Data representation iddata, plot

Nonparametric estimation of
impulse and frequency response

impulse, step, spa

Estimating black-box models of
state-space and input-output
type

pem, arx

Evaluating models compare, resid

Displaying model characteristics bode, nyquist, pzmap, step, view

Looking at parametric model
characteristics

By field referencing, like Mod.A, Mod.dA

3 Tutorial

3-4

Layer 2: Creating Models for Simulation and Transforming Models. To define models, to
generate inputs, and to simulate models,

idarx, idpoly, idproc, idss, idinput, sim

To transform models to other representations,

arxdata, polydata, ssdata, tfdata, zpkdata

Layer 3: Model Structure Selection. The third layer of the toolbox contains some
useful techniques to select orders and delays.

arxstruc, selstruc

Layer 4: Structured Models and Further Model Conversions. The fourth layer contains
transformations between continuous and discrete time, and functions for
estimating completely general model structures for linear systems. The
commands are

c2d, d2c, idss, idgrey, pe, predict
ss, tf, zp, frd (to be used with the Control System Toolbox)

The corresponding material is covered in “Defining Model Structures” on
page 3-39 and in “Examining Models” on page 3-57.

Layer 5: Recursive Identification. Recursive (adaptive, online) methods of
parameter estimation are covered by the commands

rarmax, rarx, rbj, roe, rpem, rplr

They are covered in “Recursive Parameter Estimation” on page 3-86.

See Chapter 4, “Function Reference” for a complete list of available functions.

An Introductory Example to Command Model

3-5

An Introductory Example to Command Model
A demonstration M-file called iddemo.m provides several examples of typical
sessions with the System Identification Toolbox. To start the demo, execute
iddemo from inside MATLAB.

Before giving a formal treatment of the capabilities and possibilities of the
toolbox, this example is designed to get you started with the software quickly.
This example is essentially the same as demo #2 in iddemo. You might want to
invoke MATLAB at this time, execute the demo, and follow along.

Example Details
Data has been collected from a laboratory scale process. (Feedback’s Process
Trainer PT326; see page 526 in Ljung (1999). For more references, see
“Reading More About System Identification” on page 1-22.) The process
operates much like a common hand-held hair dryer. Air is blown through a
tube after being heated at the inlet to the tube. The input to the process is the
power applied to a mesh of resistor wires that constitutes the heating device.
The output of the process is the air temperature at the outlet, measured in volts
by a thermocouple sensor.

One thousand input-output data points were collected from the process as the
input was changed in a random fashion between two levels. The sampling
interval is 80 ms. The data was loaded into MATLAB in ASCII form and is now
stored as the vectors y2 (output) and u2 (input) in the file dryer2.mat.

1 Load the data.

load dryer2

2 It contains the input vector u2, the output vector y2. Now form the data
object.

dry = iddata(y2,u2,0.08);

3 To get information about the data, just type the name.

dry

4 To get an overview of all the information contained in the iddata object dry,
type

get(dry)

3 Tutorial

3-6

5 For better bookkeeping, give names to input and outputs.

dry.InputName = 'Power';

dry.OutputName = 'Temperature';

6 Select the 300 first values for building a model.

ze = dry(1:300);

7 Plot the interval from sample 200 to 300.

plot(ze(200:300)),

8 Remove the constant levels and make the data zero-mean.

ze = detrend(ze);

9 First estimate the impulse response of the system by correlation analysis to
get some idea of time constants and the like.

impulse(ze,'sd',3)

This gives a plot with dash-dotted lines marking a confidence region
corresponding to three standard deviations (ca 99.9%). From this it is easy to
see if there is a time delay in the system.

Getting Started
The simplest way to get started is to build a state-space model where the order
is automatically determined, using a prediction error method.

m1 = pem(ze)

When the calculations are finished, a display of the basic information about m1
is shown. Any time you type m1, this display is shown. Typing present(m1)
gives some more information about the model, including uncertainties.

To retrieve the properties of this model you could, for example, find the A
matrix of the state space representation by

A = m1.a

m1 is a model object, and

get(m1)

gives a list of all information stored in the model.

An Introductory Example to Command Model

3-7

m1.EstimationInfo or m1.es for short gives information about the estimation
process, loss functions, etc.

How Good Is the Model?
How good is this model? One way to find out is to simulate it and compare the
model output with measured output. Select a portion of the original data that
was not used to build the model, for example, from sample 800 to 900.

zv = dry(800:900);
zv = detrend(zv);
compare(zv,m1);

The Bode plot of the model is obtained by

bode(m1)

An alternative is to consider the Nyquist plot and mark uncertainty regions at
certain frequencies with ellipses, corresponding to three standard deviations.

nyquist(m1,'sd',3)

You can also compare the step response of the model with one that is directly
computed from data (ze) in a nonparametric way.

step(m1,ze)

To study a model with prescribed structure, compute a difference equation
model with two poles, one zero, and three delays.

m2 = arx(ze,[2 2 3])

This produces a model of the form

where T is the sampling interval (here 0.08 second). This model, known as an
ARX model, tries to explain or compute the value of the output at time t, given
previous values of y and u. To compare its performance on validation data with
m1, type

compare(zv,m1,m2);

y t() a1y t T–() a2y t 2T–()+ + b1u t 3T–() b2u t 4T–()+=

3 Tutorial

3-8

Compare and Plot
Compute and plot the poles and zeros of the models.

pzmap(m1,m2)

The uncertainties of the poles and zeros can also be plotted.

pzmap(m1,m2,'sd',3), % '3' denotes the number of standard
deviations

Estimate the frequency response by a nonparametric spectral analysis method.

gs = spa(ze);

Compare with the frequency functions from the parametric models.

bode(m1,m2,gs)

The System Identification Problem

3-9

The System Identification Problem
This section discusses basic ways to describe linear dynamic systems and the
most important methods for estimating such models.

Impulse Responses, Frequency Functions, and
Spectra

The basic input-output configuration is depicted in the figure above. Assuming
unit sampling interval, there is an input signal

and an output signal

Assuming the signals are related by a linear system, the relationship can be
written

(3-1)

where q is the shift operator and is short for

(3-2)

and

(3-3)

y

e

u

u t(); t 1 2 … N, , ,=

y t(); t 1 2 … N, , ,=

y t() G q()u t() v t()+=

G q()u t()

G q()u t() g k()u t k–()

k 1=

∞

∑=

G q() g k()q k– ;

k 1=

∞

∑= q 1– u t() u t 1–()=

3 Tutorial

3-10

The numbers are called the impulse response of the system. Clearly,
is the output of the system at time k if the input is a single (im)pulse at

time zero. The function is called the transfer function of the system. This
function evaluated on the unit circle gives the frequency function (or
frequency-response function).

(3-4)

In (Equation 3-1) is an additional, unmeasurable disturbance (noise). Its
properties can be expressed in terms of its (power) spectrum

(3-5)

which is defined by

(3-6)

where is the covariance function of

(3-7)

and E denotes mathematical expectation. Alternatively, the disturbance
can be described as filtered white noise

(3-8)

where is white noise with variance and

(3-9)

(Equation 3-1) and (Equation 3-8) together give a time-domain description of
the system

(3-10)

where G is the transfer function of the system. (Equation 3-4) and
(Equation 3-5) constitute a frequency-domain description.

(3-11)

g k(){ }
g k()

G q()
q eiω=()

G eiω()

v t()

Φv ω()

Φv ω() Rv τ()e iωτ–

τ ∞–=

∞

∑=

Rv τ() v t()

Rv τ() Ev t()v t τ–()=

v t()

v t() H q()e t()=

e t() λ

Φv ω() λ H eiω()
2

=

y t() G q()u t() H q()e t()+=

G eiω(); Φv ω()

The System Identification Problem

3-11

The impulse response (Equation 3-3) and the frequency-domain description
(Equation 3-11) are called nonparametric model descriptions because they are
not defined in terms of a finite number of parameters. The basic description
(Equation 3-10) also applies to the multivariable case, that is, to systems with
several (say nu) input signals and several (say ny) output signals. In that
case is an ny-by-nu matrix while and are ny-by-ny matrices.

Polynomial Representation of Transfer Functions
Rather than specifying the functions G and H in (Equation 3-10) in terms of
functions of the frequency variable , you can describe them as rational
functions of and specify the numerator and denominator coefficients in
some way.

A commonly used parametric model is the ARX model that corresponds to

(3-12)

where B and A are polynomials in the delay operator .

(3-13)

Here, the numbers na and nb are the orders of the respective polynomials. The
number nk is the number of delays from input to output. The model is usually
written

(3-14)

or explicitly

(3-15)

Note that (Equation 3-14) and (Equation 3-15) apply also to the multivariable
case, with ny output channels and nu input channels. Then and the
coefficients become ny-by-ny matrices, and and the coefficients
become ny-by-nu matrices.

Another very common, and more general, model structure is the ARMAX
structure

G q() H q() Φv ω()

ω
q 1–

G q() q nk– B q()
A q()
------------;⋅= H q() 1

A q()
------------=

q 1–

A q() 1 a1q 1– …… anaq na–+ + +=

B q() b1 b2q 1– …… bnbq nb– 1++ + +=

A q()y t() B q()u t nk–() e t()+=

y t() a1y t 1–() …… anay t na–()+ + + =

b1u t nk–() b2u t nk– 1–() …… bnbu t nk– nb– 1+() e t()+ + + +

A q()
ai B q() bi

3 Tutorial

3-12

(3-16)

Here, and are as in (Equation 3-13), while

An output-error (OE) structure is obtained as

(3-17)

with

The so-called Box-Jenkins (BJ) model structure is given by

(3-18)

with

All these models are special cases of the general parametric model structure.

(3-19)

The variance of the white noise is assumed to be .

Within the structure of (Equation 3-19), virtually all the usual linear black-box
model structures are obtained as special cases. The ARX structure is obviously
obtained for . The ARMAX structure corresponds to

. The ARARX structure (or the generalized least squares model)
is obtained for , while the ARARMAX structure (or extended
matrix model) corresponds to . The output-error model is obtained with

, while the Box-Jenkins model corresponds to . (See
Section 4.2 in Ljung (1999) for a detailed discussion.)

The same type of models can be defined for systems with an arbitrary number
of inputs. They have the form

A q()y t() B q()u t nk–() C q()e t()+=

A q() B q()

C q() 1 c1q 1– … cncq nc–+ + +=

y t() B q()
F q()
------------u t nk–() e t()+=

F q() 1 f1q 1– … fnfq
nf–+ + +=

y t() B q()
F q()
------------u t nk–() C q()

D q()
-------------e t()+=

D q() 1 d1q 1– … dndq nd–+ + +=

A q()y t() B q()
F q()
------------u t nk–() C q()

D q()
-------------e t()+=

e t(){ } λ

nc nd nf 0= = =
nf nd 0= =

nc nf 0= =
nf 0=

na nc nd 0= = = na 0=

The System Identification Problem

3-13

(3-20)

State-Space Representation of Transfer Functions
A common way of describing linear systems is to use the state-space form.

(3-21)

Here the relationship between the input and the output is defined
via the nx-dimensional state vector . In transfer function form
(Equation 3-21) corresponds to (Equation 3-1) with

(3-22)

Here is the nx-by-nx identity matrix. Clearly (Equation 3-21) can be
viewed as one way of parameterizing the transfer function: With
(Equation 3-22), becomes a function of the elements of the matrices A, B,
C, and D.

To further describe the character of the noise term in (Equation 3-21), a
more flexible innovations form of the state-space model can be used.

(3-23)

This is equivalent to (Equation 3-10) with given by (Equation 3-22) and
by

(3-24)

Here ny is the dimension of and .

It is often possible to set up a system description directly in the innovations
form (Equation 3-23). In other cases, it might be preferable to describe first the
nature of disturbances that act on the system. That leads to a stochastic
state-space model

(3-25)

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–() ...+

Bnu q()
Fnu q()

·
unu t nknu–() C q()

D q()
-------------e t()++=

x t 1+() Ax t() Bu t()+=
y t() Cx t() Du t() v t()+ +=

u t() y t()
x t()

G q() C qInx A–() 1– B D+=

Inx

G q()

v t()

x t 1+() Ax t() Bu t() Ke t()+ +=
y t() Cx t() Du t() e t()+ +=

G q()
H q()

H q() C qInx A–() 1– K Iny+=

y t() e t()

x t 1+() Ax t() Bu t() w t()+ +=
y t() Cx t() Du t() e t()+ +=

3 Tutorial

3-14

where and are stochastic processes with certain covariance
properties. If you neglect transients and consider only the input-output
properties, (Equation 3-25) is equivalent to (Equation 3-23) if the matrix K is
chosen as the steady-state Kalman gain. How to compute K from
(Equation 3-25) is described in the Control System Toolbox documentation.

Continuous-Time State-Space Models
It is often easier to describe a system from physical modeling in terms of a
continuous-time model. The reason is that most physical laws are expressed in
continuous time as differential equations. Therefore, physical modeling
typically leads to state-space descriptions like

(3-26)

Here, means the time derivative of . If the input is piecewise constant over
time intervals , then the relationship between
and can be exactly expressed by (Equation 3-21) by taking

(3-27)

and associating with , etc. If you start with a continuous-time
innovations form

(3-28)

the discrete-time counterpart is given by (Equation 3-23) where the
relationships (Equation 3-27) still hold. The exact connection between and

 is somewhat more complicated, though. An ad hoc solution is to use

 (3-29)

in analogy with G and B. This is a good approximation for short sampling
intervals T.

w t() e t()

x· t() Fx t() Gu t()+=
y t() Hx t() Du t() v t()+ +=

x· x
kT t k 1+()T<≤ u k[] u kT()=

y k[] y kT()=

A eFT;= B eFτG τ;d

0

T

∫= C H=

y tT() y t[]

x· t() Fx t() Gu t() K̃e t()+ +=
y t() Hx t() Du t() e t()+ +=

K̃
K

K eFτK̃ τ;d

0

T

∫=

The System Identification Problem

3-15

Estimating Impulse Responses
Consider the descriptions (Equation 3-1) and (Equation 3-2). To directly
estimate the impulse response coefficients, also in the multivariable case, it is
suitable to define a high-order Finite Impulse Response (FIR) model

(3-30)

and estimate the g-coefficients by the linear least squares method. In fact, to
check whether there are noncausal effects from input to output, for example,
due to feedback from y in the generation of u (closed loop data), g for negative
lags can also be estimated.

(3-31)

If u is white noise, the impulse response coefficients will be correctly estimated,
even if the true dynamics from u to y are more complicated than these models.
Therefore it is natural to filter both the output and the input through a filter
that makes the input sequence as white as possible before estimating the g.
This is the essence of correlation analysis for estimating impulse responses.

Estimating Spectra and Frequency Functions
This section describes methods that estimate the frequency functions and
spectra (Equation 3-11) directly. The cross-covariance function
between and is defined as analogously to
(Equation 3-7). Its Fourier transform, the cross spectrum , is defined
analogously to (Equation 3-6). Provided that the input is independent of

, the relationship (Equation 3-1) implies the following relationships
between the spectra.

(3-32)

By estimating the various spectra involved, you can estimate the frequency
function and the disturbance spectrum as follows:

Form estimates of the covariance functions (as defined in (Equation 3-7))
, , and , using

y t() g 0()u t() g 1()u t 1–() … g n()u t n–()+ + +=

y t() g m–()u t m+() … g 1–()u t 1+() g 0()u t()+ + + +=
g 1()u t 1–() … g n()u t n–()+ +

Ryu τ()
y t() u t() Ey t τ+()u t()

Φyu ω()
u t()

v t()

Φy ω() G eiω()
2

Φu ω() Φv ω()+=

Φyu ω() G eiω()Φu ω()=

R̂y τ() Ryu τ() R̂u τ()

3 Tutorial

3-16

(3-33)

and analog expressions for the others. Then, form estimates of the
corresponding spectra

(3-34)

and analogously for and . Here is the so-called lag window and
M is the width of the lag window. The estimates are then formed as

(3-35)

This procedure is known as spectral analysis. (See Chapter 6 in Ljung (1999).)

Estimating Parametric Models
Given a description (Equation 3-10) and having observed the input-output data
u, y, the (prediction) errors in (Equation 3-10) can be computed as

(3-36)

These errors are, for given data y and u, functions of G and H. These in turn
are parameterized by the polynomials in (Equation 3-14) through
(Equation 3-19) or by entries in the state-space matrices defined in
(Equation 3-26) through (Equation 3-29). The most common parametric
identification method is to determine estimates of G and H by minimizing

(3-37)

that is

R̂yu τ() 1
N
---- y t τ+()u t()

t 1=

N

∑=

Φ
ˆ

y ω() Ry
ˆ τ()WM τ()e iωτ–

τ M–=

M

∑=

Φu Φyu WM τ()

ĜN eiω() Φ
ˆ

yu ω()

Φ
ˆ

u ω()
-------------------;= Φ

ˆ
v ω() Φ

ˆ
y ω() Φ

ˆ
yu ω()

2

Φ
ˆ

u ω()
-------------------------–=

e t()

e t() H 1– q() y t() G q()u t()–[]=

VN G H,() e2 t()

t 1=

N

∑=

The System Identification Problem

3-17

(3-38)

This is called a prediction error method. For Gaussian disturbances it coincides
with the maximum likelihood method. (See Chapter 7 in Ljung (1999).)

A somewhat different philosophy can be applied to the ARX model
(Equation 3-14). By forming filtered versions of the input

(3-39)

and by multiplying (Equation 3-14) with , , 2, , na and
, , 2, , nb and summing over t, the noise in

(Equation 3-14) can be correlated out and solved for the dynamics. This gives
the instrumental variable method, and are called the instruments. (See
Section 7.6 in Ljung (1999).)

Subspace Methods for Estimating State-Space
Models
The state-space matrices A, B, C, D, and K in (Equation 3-23) can be estimated
directly, without first specifying any particular parameterization by efficient
subspace methods. The idea behind this can be explained as follows: If the
sequence of state vectors x(t) were known, together with y(t) and u(t),
(Equation 3-23) would be a linear regression, and C and D could be estimated
by the least squares method. Then e(t) could be determined, and treated as a
known signal in (Equation 3-23), which then would be another linear
regression model for A, B, and K. (One could also treat (Equation 3-21) as a
linear regression for A, B, C, and D with y(t) and x(t+1) as simultaneous
outputs, and find the joint process and measurement noises as the residuals
from this regression. The Kalman gain K could then be computed from the
Riccati equation.) Thus, once the states are known, the estimation of the
state-space matrices is easy.

How to find the states x(t)? All states in representations like (Equation 3-23)
can be formed as linear combinations of the k-step-ahead predicted outputs
(k = 1,2,...,n). It is thus a matter of finding these predictors, and then
selecting a basis among them. The subspace methods form an efficient and
numerically reliable way of determining the predictors by projections directly

ĜN ĤN],[argmin e2 t()

t 1=

N

∑=

N q()s t() M q()u t()=

s t k–() k 1= …
u t nk– 1 k–+() k 1= …

s t()

3 Tutorial

3-18

on the observed data sequences. See Sections 7.3 and 10.6 in Ljung (1999). For
more details, see the references under n4sid in the reference pages.

The advice Command
A general command, advice, can be applied to any estimated model and to any
data set,

advice(model)
advice(data)

to provide the user with information about the quality of the model and
characteristics, possibilities, and fallacies for the data set.

Data Representation and Nonparametric Model Estimation

3-19

Data Representation and Nonparametric Model Estimation
This and the following sections introduce the basic functions in the System
Identification Toolbox. Not all of the options available when using the functions
are described here; see Chapter 4, “Function Reference,” and the online Help
facility.

Data Representation
The observed output and input signals, and , are represented as
column vectors y and u. Row k corresponds to sample number k. For
multivariable systems, each input (output) component is represented as a
column vector, so that u becomes an N-by-nu matrix (N = number of sampled
observations, nu = number of input channels). The output-input data is
collectively represented in the iddata format. This is the basic object for
dealing with signals in the toolbox. It is used by most of the commands. Create
it using

Data = iddata(y,u,Ts)

where y is a column vector or an N-by-ny matrix. The columns of y correspond
to the output channels. Similarly u is a column vector or an N-by-nu matrix
containing the signals of the input channels. Ts is the sampling interval. This
construction is sufficient for almost all purposes.

The data is then plotted by plot(Data) and portions of the data record are
selected, as in

ze = Data(1:300)

You can retrieve the signals in the output channels using Data.OutputData or,
for short, Data.y. Similarly you can obtain the input signals using
Data.InputData or Data.u.

For a time series (no input channels) use Data = iddata(y), or let u = []. An
iddata object can also contain just an input if you let y = [].

You can change the sampling interval by using set(Data,'Ts',0.3) or, more
simply, by

Data.Ts = 0.3

More details about the iddata object are given at the end of this section.

y t() u t()

3 Tutorial

3-20

Correlation Analysis
The correlation analysis procedure described in “Estimating Impulse
Responses” on page 3-15 is implemented in the function impulse.

impulse(Data)

This function plots the estimated impulse response. Adding an argument 'sd'
as in

impulse(Data,'sd',3)

also marks a confidence region corresponding to (in this case) three standard
deviations. The result can be stored and replotted.

ir = impulse(Data)
impulse(ir,'sd',3)

An alternative is the command step that plots the step response, calculated
from the impulse estimate.

step(Data)

Spectral Analysis
The function spa performs spectral analysis according to the procedure in
(Equation 3-35) through (Equation 3-37).

g = spa(Data)

Here Data contains the output-input data in the iddata object as above. g is
returned as an idfrd (identified frequency response data) model object that
contains the estimated frequency function and the estimated disturbance
spectrum in (Equation 3-37), as well as estimated uncertainty covariances.
The idfrd object is described in the idfrd reference page, but for normal use
you do not have to bother about these details. The frequency function, or
frequency response, G in g can be graphed by the function bode, ffplot, or
nyquist. The noise spectrum is retrieved by g('n') ('n' for noise) so

g = spa(Data)
bode(g)
bode(g('n'))

performs the spectral analysis, and plots first G and then . The bode
function gives logarithmic amplitude and frequency scales (in rad/s) and linear

GN
Φ
ˆ

v

Φv

Data Representation and Nonparametric Model Estimation

3-21

phase scale, while ffplot gives linear frequency scales (in Hz). You can display
the uncertainty of the estimates by adding the argument 'sd', as in

bode(g,'sd',3)

which displays, by dash-dotted lines, a confidence region around the estimate
that corresponds (in this case) to three standard deviations. Adding an
argument 'fill' shows the uncertainty region as a filled region instead.

bode(g,'sd',3,'fill')

Similarly,

nyquist(g)

gives a Nyquist plot of the frequency function, that is, a plot of the real part
versus the imaginary part of G.

If Data = y is a time series, that is, Data has no input channel, spa returns an
estimate of the spectrum of that signal.

g= spa(y)
ffplot(g)

In the computations (Equation 3-35) through (Equation 3-37), spa uses as a lag
window the Hamming window for with a default length M equal to the
minimum of 30 and a tenth of the number of data points. You can change this
window size M to an arbitrary number using

g = spa(Data,M)

The rule is that as M increases, the estimated frequency functions show sharper
details, but are also more affected by random disturbances. A typical sequence
of commands that test different window sizes is

g10 = spa(Data,10)
g25 = spa(Data,25)
g50 = spa(Data,50)
bode(g10, g25, g50)

An empirical transfer function estimate is obtained as the ratio of the output
and input Fourier transforms with

g = etfe(Data)

W τ()

3 Tutorial

3-22

This can also be interpreted as the spectral analysis estimate for a window size
that is equal to the data length. For time series, etfe gives the periodogram as
a spectral estimate. The function also allows some smoothing of the crude
estimate; it can be a good alternative for signals and systems with sharp
resonances. See Chapter 4, “Function Reference,” for more information.

Estimation of spectra and frequency functions involves a tradeoff between
resolution and noise sensitivity. By resolution is meant the finest details (in
rad/s) that can be distinguished in the estimate, while noise sensitivity
describes how disturbances of different kinds give high variability in the
estimates. The number M mentioned above is a way to control this tradeoff
globally over the frequency range.

A useful complement to etfe and spa is the possibility of having
frequency-dependent resolution, using the command spafdr,

g = spafdr(Data)
g = spafrd(Data,Res,Freqs)

with the possibility of defining both the frequencies Freqs for which the
estimate should be formed and the resolution Res for the different frequencies.
See the spafdr reference page for more details.

Frequency Domain Data
The iddata object can also represent frequency-domain data, that is, input and
output signals that are Fourier transforms of time-domain signals. Such data
sets are useful in many contexts. You create a frequency-domain data set by

Data = iddata(Y,U,Ts,'Domain,'Frequency','freq',W)

where Y and U are the output and input Fourier transforms (N-by-ny and
N-by-nu complex-valued matrices) and W is the vector of associated frequencies.
That means that Y(kf,ky) is the frequency component of output number ky at
frequency W(kf). Frequency-domain data can also easily be constructed from
time-domain data, as in

dataf = fft(data)

A further way to handle frequency-domain information for model estimation is
to define a frequency response data object (IDFRD) that contains the
frequency-response data of a system, as in Equation 3-11:

datfr = idfrd(G,W,Ts)

Data Representation and Nonparametric Model Estimation

3-23

datfr = idfrd(G,W,Ts,'SpectrumData',Phiv)

Here G is the frequency response function, W is the vector of frequencies, and Ts
is the sampling interval. Optionally, you can also include the additive output
spectrum Phiv = .

You can also create a frequency-response data object from a model or from data
by

datafr = idfrd(model)
datafr = spafdr(Data)

(Compare the techniques on page 3-20.) While datafr can be seen as a
nonparametric model of the system, it can also be seen as a more compact way
of representing the data Data. This representation can be used to further
estimate parametric models. Also, in many applications it is common to use
frequency analyzers for data acquisition. They deliver data in the
frequency-function form rather than as separate input and output signals, in a
much more compact form.

More details of this are given on the reference pages for iddata and idfrd. The
main message here is that the handling of data in time and frequency domain
is essentially transparent. All estimation and representation commands that
apply to time-domain data can also be used with the same syntax for
frequency-domain data.

Two differences can be noted:

• Noise models cannot be estimated from frequency-domain data.

• Frequency-domain data can handle representation of time-continuous
signals (Ts = 0). This means that Y and U are the continuous-time Fourier
transforms given at a finite number of frequencies.

More on the Data Representation in iddata

Some Bookkeeping Facilities
The input and output channels are given default names like y1, y2, u1, u2, etc.
You can set the channel names using

set(Data,'InputName',{'Voltage','Current'},'OutputName','Tempera
ture')

Φv ω()

3 Tutorial

3-24

(two inputs and one output in this example) and these names will then follow
the object and appear in all plots. The names are also inherited by models that
are estimated from the data.

Similarly, you can specify channel units using the properties OutputUnit and
InputUnit. These units, when specified, are used in plots.

The time points associated with the data samples are determined by the
sampling interval Ts and the time of the first sample, Tstart.

Data.Tstart = 24

The actual time-point values are given by the property SamplingInstants, as
in

plot(Data.sa,Data.u)

for a plot of the input with correct time points. Autofill is used for all properties,
and they are case insensitive. For easy writing, 'u' is synonymous with
'Input' and 'y' with 'Output' when you are referring to the properties.

Manipulating Channels
An easy way to set and retrieve channel properties is to use subscripting. The
subscripts are defined as

Data(samples,outputs,inputs)

so Dat(:,3,:) is the data object obtained from Dat by keeping all input
channels, but only output channel 3. (Trailing colons can be omitted, so
Dat(:,3,:) = Dat(:,3).)

You can also retrieve the channels by their names, so that

Dat(:,{'speed','flow'},[])

is the data object where the indicated output channels have been selected and
no input channels are selected.

Moreover,

Dat1(101:200,[3 4],[1 3]) = Dat2(1001:1100,[1 2],[6 7])

will change samples 101 to 200 of output channels 3 and 4 and input channels
1 and 3 in the iddata object Dat1 to the indicated values from iddata object
Dat2. The names and units of these channels are then also changed
accordingly.

Data Representation and Nonparametric Model Estimation

3-25

To add new channels, use horizontal concatenation of iddata objects.

Dat =[Dat1, Dat2];

See “Adding Channels” on page 3-27 or add the data record directly, so that

Dat.u(:,5) = u

adds a fifth input to Dat.

Nonequal Sampling
The property SamplingInstants gives the sampling instants of the data points.
It can always be retrieved by get(Dat,'SamplingInstants') (or Dat.s) and is
then computed from Dat.Ts and Dat.Tstart. SamplingInstants can also be
set to an arbitrary vector of the same length as the data, so that nonequal
sampling can be handled. Ts is then automatically set to []. Most of the
estimation routines, however, do not handle unequally sampled data.

Multiple Experiments
The iddata object can also store data from separate experiments. The property
ExperimentName is used to separate the experiments. The number of data as
well as the sampling properties can vary from experiment to experiment, but
the input and output channels must be the same. (Use NaNs to fill unmeasured
channels in certain experiments.) The data records will be cell arrays where
the cells contain data from each experiment.

You can define multiple experiments directly by letting the 'y' and 'u'
properties as well as 'Ts' and 'Tstart' be cell arrays.

It is normally easier to create multiple-experiment data by merging
experiments, as in

Dat = merge(Dat1,Dat2)

See the merge (iddata) reference page. Storing multiple experiments as one
iddata object can be very useful to handle experimental data that has been
collected on different occasions, or when a data set has been split up to remove
bad portions of the data. All the toolbox’s routines accept multiple-experiment
data.

You can retrieve experiments using the command getexp, as in getexp(Dat,3)
or getexp(Dat,'Period1'). You can also set and retrieve them by subscripting
with a fourth index: Dat(:,:,:,3)} is experiment number 3 and

3 Tutorial

3-26

Dat(:,:,:,{'Day1','Day4'}) retrieves the two experiments with the
indicated names.

The subscripting can be combined: Dat(1:100,[2,3],[4:8],3) gives the 100
first samples of output channels 2 and 3 and input channels 4 to 8 of
experiment number 3. You can also use subscripting for subassignment:

Dat(:,:,:,''Run4') = Dat2

adds the data in Dat2 as a new experiment with name 'Run4'. See iddemo #9
for an illustration of how multiple experiments can be used.

iddata Properties
Type get(Dat) or see the iddata reference page for a complete list of iddata
properties.

Subreferencing
The samples, outputs, and input channels can be referenced according to

Data(samples,outputs,inputs)

Use a colon (:) to denote all samples/channels and the empty matrix ([]) to
denote no samples/channels. The channels can be referenced by number or by
name. For several names you must use a cell array.

Dat2 = Dat(:,'y3',{'u1','u4'})
Dat2 = Dat(:,3,[1 4])

Logical expressions also work.

Dat3 = Dat2(Dat2.sa>1.27&Dat2.sa<9.3)

selects the samples with time marks between 1.27 and 9.3.

Any subreferenced variable can also be assigned.

Data(1:10,1,1) = Dat1(101:110,2,3)

Data Representation and Nonparametric Model Estimation

3-27

Adding Channels
Dat = [Dat1,Dat2,...,DatN]

creates an iddata object Dat, consisting of the input and output channels in
Dat1,... DatN. Default channel names ('u1', 'u2', 'y1', 'y2', etc.) are
changed so that overlaps in names are avoided, and the new channels are
added.

If Datk contains channels with user-specified names that are already present
in the channels of Datj, j<k, these new channels are ignored.

Adding Samples
Dat = [Dat1;Dat2;... ;DatN]

creates an iddata object Dat whose signals are obtained by stacking those of
Datk on top of each other, that is,

Dat.y = [Dat1.y;Dat2.y; ... DatN.y]

and similarly for the inputs. The Datk objects must all have the same number
of channels and experiments.

3 Tutorial

3-28

Parametric Model Estimation
The System Identification Toolbox contains several functions for parametric
model estimation. They all share the same command structure.

m = function(Data,modstruc)
m = ...
function(Data,modstruc,'Property1',Value1,...'PropertyN',ValueN)

The argument Data is an iddata object that contains the output and input data
sequences, while modstruc specifies the particular structure of the model to be
estimated. The resulting estimated model is contained in m. It is a model object
that stores various information. The model objects will be described in
“Defining Model Structures” on page 3-39, but for most use of the toolbox, you
do not have to consider the details of these objects. Just typing the model name

m

will give a concise display of the model. The command

present(m)

gives some more details, while

get(m)

gives a complete list of the model’s properties. The property values can be
easily retrieved just by dot-referencing. For example,

m.par

retrieves the estimated parameters.

In the function call (...,'Property1', Value1,...,'PropertyN',ValueN) is
a list of properties that can be assigned to affect the model structure as well as
the estimation algorithm. A list of typical properties is given at the end of this
section. The model m is also immediately prepared for displaying and analyzing
its characteristics as well as for transforming it to other representations, as in

bode(m)
compare(Data,m)
[A,B,C,D, K] = ssdata(m)

See “Examining Models” on page 3-57 for a detailed discussion of these
possibilities.

Parametric Model Estimation

3-29

In the following, Data denotes an iddata object that contains the input output
data as described in the previous section. It can also just contain an output
signal, that is, a time series.

ARX Models
To estimate the parameters and of the ARX model (Equation 3-14), use
the function arx.

m = arx(Data,[na nb nk])

Here na, nb, and nk are the corresponding orders and delays in (Equation 3-15)
that define the exact model structure. The function arx implements the least
squares estimation method, using QR-factorization for overdetermined linear
equations.

An alternative is to use the instrumental variable (IV) method described in
connection with (Equation 3-39). This is obtained with

m = iv4(Data,[na nb nk])

which gives an automatic (and approximately optimal) choice of the filters N
and M in (Equation 3-39). (See the procedure (15.21)-(15.26) in Ljung (1999).)

Both arx and iv4 are applicable to arbitrary multivariable systems. If you have
ny outputs and nu inputs, the orders are defined accordingly: na is an ny-by-ny
matrix whose i-jth entry gives the order of the polynomial that relates past
values of to the current value of . In other words, the past values of up
to are used when predicting . Similarly, the i-j entries of the
ny-by-nu matrices nu and nk, respectively, give the order and delay from input
number j when predicting output number i. (See “Multivariable ARX Models:
the idarx Model” on page 3-43 and Chapter 4, “Function Reference” for exact
details.)

AR Models
For a single output signal , the counterpart of the ARX model is the AR
model.

(3-40)

The arx command also covers this special case:

m = arx(y,na)

ai bi

yj yi yj
yj t na i j,()–() yi t()

y t()

A q()y t() e t()=

3 Tutorial

3-30

but for scalar signals more options are offered by the command

m = ar(y,na)

which has an option that allows you to choose the algorithm from a group of
several popular techniques for computing the least squares AR model. Among
these are Burg’s method, a geometric lattice method, the Yule-Walker
approach, and a modified covariance method. (See Chapter 4, “Function
Reference” for details.) The counterpart of the iv4 command is

m = ivar(y,na)

which uses an instrumental variable technique to compute the AR part of a
time series.

General Polynomial Black-Box Models
Based on the prediction error method (Equation 3-38), you can construct
models of basically any structure. For the general model (Equation 3-19), there
is the function

m = pem(Data,nn)

where nn gives all the orders and delays.

nn = [na nb nc nd nf nk]

The nonzero orders of the model can also be defined as property name/property
value pairs, as in

m = pem(Data,'na',na,'nb',nb,'nc',nc,'nk',nk)

The input parameters are defined in “Polynomial Representation of Transfer
Functions” on page 3-11. The pem command covers all cases of black-box linear
system models. For the common special cases,

m = armax(Data,[na nb nc nk])
m = oe(Data,[nb nf nk])
m = bj(Data,[nb nc nd nf nk])

can be used. These handle the model structures (Equation 3-16),
(Equation 3-17), and (Equation 3-18), respectively.

All the routines also cover single-output, multiinput systems of the type

Parametric Model Estimation

3-31

(3-41)

where nb, nf, and nk are row vectors of the same lengths as the number of input
channels containing each of the orders and delays:

nb = [nb1 ... nbnu];
nf = [nf1 ... nfnu];
nk = [nk1 ... nknu];

These parameter estimation routines require an iterative search for the
minimum of the function (Equation 3-39). This search uses a special startup
procedure based on least squares and instrumental variables (the details are
given as Equation (10.79) in Ljung (1999)). From the initial estimate, a
Gauss-Newton minimization procedure is carried out until the norm of the
Gauss-Newton direction is less than a certain tolerance. See Ljung (1999),
Section 11.2, or Dennis and Schnabel (1983) for details. See also “Optional
Variables” on page 3-33 on optional variables associated with the search.

The estimation routines also return the estimated covariance matrix of the
estimated parameter vector as part of m. This reflects the reliability of the
estimates. The covariance matrix estimate is computed under the assumption
that it is possible to obtain a true description in the given structure.

You can also start the routines pem, armax, oe, and bj at any initial value mi
that is a model object, by replacing nn by mi. For example,

m = pem(Data,mi)

While the search is typically initialized using the built-in startup procedure
giving just orders and delays (as described above), the ability to force a specific
initial condition is useful in several contexts. Some examples are mentioned in
“Initial Parameter Values” on page 3-99.

Information about how the minimization progresses can be supplied to the
MATLAB Command Window by the property trace. See the list in “Properties
That Apply to Estimation Methods Using Iterative Search for Minimizing a
Criterion” on page 3-36.

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–() …

Bnu q()
Fnu q()
-------------------unu t nknu–() C q()

D q()
-------------e t()+ + +=

3 Tutorial

3-32

Process Models
For process control applications, often simple continuous-time models are used,
consisting of static gain, time constants, and a possible dead time (time delay).
Such models are estimated by commands of this kind:

m = pem(Data,'P1D')

where P1D indicates one pole (time constant) and a delay. See “Process Models:
the idproc Model” on page 3-41 and the reference page for Purpose for more
details.

State-Space Models

Black-Box, Discrete Time Parameterizations
Suppose first that there is no particular knowledge about the internal
structure of the discrete-time state-space model (Equation 3-15). Any linear
model is sought. A simple approach is to use

m = pem(Data)

This estimates a state-space model of an order (among 1 to 10) that seems
reasonable.

To find a black-box model of a certain order n, use

m = pem(Data,n)

To get a plot from which the order can be determined among a list of orders
nn = [n1,n2,...,nN], use

m = pem(Data,'nx',nn)

All these black-box models are initialized by the subspace method n4sid. To
obtain the estimate from this routine, use

m = n4sid(Data,n)

Arbitrarily Structured Models in Discrete and Continuous Time
For state-space models of given structure, most of the effort involved relates to
defining and manipulating the structure. This is discussed in “Structured
State-Space Models with Free Parameters: the idss Model” on page 3-48. Once
the structure is defined as ms, you can estimate its parameters with

Parametric Model Estimation

3-33

m = pem(Data,ms)

When the systems are multioutput, the following criterion is used for the
minimization:

(3-42)

which is the maximum likelihood criterion for Gaussian noise with unknown
covariance matrix.

The numerical minimization of the prediction error criterion (Equation 3-39) or
(Equation 3-42) can be a difficult problem for general model parameterizations.
The criterion, as a function of the free parameters, can define a complicated
surface with many local minima, narrow valleys, and so on. This can require
substantial interaction from the user, in providing reasonable initial
parameter values, and also by freezing certain parameter values (using the
property FixedParameters) while allowing others to be free. Note that pem
easily allows the freezing of any parameters to their current/nominal values.
You can also directly manipulate the model structure, as described in
“Structured State-Space Models with Free Parameters: the idss Model” on
page 3-48. A procedure that is often used for state-space models is to allow the
noise parameter in the K matrix to be free only when a reasonable model of the
dynamic part has been obtained.

Optional Variables
The estimation functions accept a list of property name/property value pairs
that can affect both the model structure and the estimation algorithm. For
complete lists of these properties, see algorithm properties, idarx, idmodel,
idpoly, idproc, idss, and idgrey in Chapter 4, “Function Reference.” Some of
them are listed here. Note that any property, as well as values that are strings,
can be entered as any unambiguous, case-insensitive abbreviation, as in

m = pem(Data,mi,'fo','si')

det e t()eT t()

t 1=

N

∑

3 Tutorial

3-34

Note Algorithm is a property of idmodel. Any algorithm property can be
separately set as above. If you have a standard algorithm set up that you
prefer, you can set those properties simultaneously, as in
m = pem(Data,mi,'alg',myalg).

Note The algorithm properties, like all other model properties, are inherited
by the resulting model m. If you continue the estimation using m as the initial
model, all previously set algorithm features will thus apply, unless you specify
otherwise.

Applying to All Estimation Methods
The following properties apply to all estimation methods:

• Focus
• MaxSize
• FixedParameter

Focus: This property affects the weighting applied to the fit between the model
and the data. It can be used to ensure that the model approximates the true
system well over certain frequency intervals. Focus can assume the following
values:

• Prediction: (Default) The model is determined by minimizing the prediction
errors. It corresponds to a frequency weighting that is given by the input
spectrum times the squared inverse noise model. Typically, this favors a
good fit at high frequencies. From a statistical variance point of view, this is
the optimal weighting, but then the approximation aspects (bias) of the fit
are neglected.

• Simulation: Frequency weighting of the transfer function fit is given by the
input spectrum. Frequency ranges where the input has considerable power
are thus better described by the model. In other words, the model
approximation is such that the model will produce as good simulations as
possible when applied to inputs with the same spectra as used for the
estimation. For models that have no disturbance model (A=C=D=1 for
idpoly models and K=0 for idss models) there is no difference between the

Parametric Model Estimation

3-35

simulation and prediction values. For models with a disturbance description,
this is estimated by a prediction error method, keeping the estimated
transfer function from input to output fixed. The resulting model is
guaranteed to be stable.

• Stability: The algorithm is modified so that a stable model is guaranteed,
but the weighting still corresponds to prediction.

• Frequency range for passbands: Focus = [w1 w2] where the interval
defines a passband (in rad/s) for the signals. By letting focus have several
rows, you can define filtering with several passbands. The model fit is then
focused on the passbands defined in this way.

• Any SISO linear filter: The transfer function from input to output is
determined by a frequency fit with this filter times the input spectrum as
weighting function. The noise model is determined by a prediction error
method, keeping the transfer function estimate fixed. To obtain a good model
fit over a specific frequency range, the filter should thus be chosen with a
passband over this range. For a model with no disturbance model, the result
is the same as first applying prefiltering to data using idfilt. The filter can
be specified as

- Any single-input single-output idmodel

- An ss, tf, or zpk model from the Control System Toolbox

- {A,B,C,D} with the state-space matrices for the filter (notice the curly
brackets)

- {numerator, denominator} with the transfer function
numerator/denominator of the filter

MaxSize: No matrix with more than MaxSize elements is formed by the
algorithm. Instead, for loops are used. MaxSize thus decides the memory/speed
tradeoff, and can prevent slow use of virtual memory. MaxSize can be any
positive integer, but the input-output data must contain fewer than MaxSize
elements. The default value of MaxSize is Auto, which means that the value is
determined in the M-file idmsize. The user can edit this file to optimize speed
on a particular computer. See also “Memory/Speed Tradeoffs” on page 3-98.

FixedParameter: A list of parameters that are kept fixed to the nominal/initial
values and not estimated. This is a vector of integers containing the indices of
the fixed parameters or a cell array of parameter names. If names are used,
wildcard entries apply, which can be convenient if you have groups of
parameters in your model. See the reference page for Algorithm Properties.

3 Tutorial

3-36

Algorithm Properties That Apply to n4sid, Estimating State-Space Models
The properties that apply to subspace model estimation are

• N4Weight
• N4Horizon

These properties also apply to pem for estimating black-box state-space models,
because pem is initialized by the n4sid estimate.

N4Weight: This property determines some weighting matrices used in the
singular-value decomposition that is a central step in the algorithm. Two
choices are offered: moesp, which corresponds to the MOESP algorithm by
Verhaegen, and cva, which is the canonical variable algorithm by Larimore.
The default value is N4Weight = Auto, which gives an automatic choice
between the two options.

N4Horizon: Determines the prediction horizons forward and backward used by
the algorithm. This is a row vector with three elements: N4Horizon =[r sy
su], where r is the maximum forward prediction horizon; that is, the algorithm
uses up to r-step-ahead predictors. sy is the number of past outputs, and su is
the number of past inputs that are used for the predictions. See Ljung (1999),
pages 345 to 348. These numbers can have a substantial influence on the
quality of the resulting model, and there are no simple rules for choosing them.
Making N4Horizon a k-by-3 matrix means that each row of N4Horizon is tried
and the value that gives the best (prediction) fit to data is selected. If you
specify only one column in N4Horizon, the interpretation is r=sy=su. The
default choice is N4Horizon = Auto, which uses the Akaike Information
Criterion (AIC) for the selection of sy and su. See the reference page for n4sid
for literature references.

Properties That Apply to Estimation Methods Using Iterative Search for
Minimizing a Criterion
The properties that govern the iterative search are

• Trace
• LimitError
• MaxIter
• Tolerance
• SearchDirection
• Advanced

These properties apply to armax, bj, oe, and pem.

Parametric Model Estimation

3-37

Trace: This property determines the information about the iterative search
that is provided to the MATLAB Command Window:

LimitError: This variable determines how the criterion is modified from
quadratic to one that gives linear weight to large errors. Errors larger than
LimitError times the estimated standard deviation will carry a linear weight
in the criteria. The default value of LimitError is 1.6. LimitError = 0 disables
the robustification and leads to a purely quadratic criterion. The standard
deviation is estimated robustly as the median of the absolute deviations from
the median, divided by 0.7. (See Equations (15.9) and (15.10) in Ljung (1999).)

MaxIter: The maximum number of iterations performed during the search for
minimum. The iterations stop when MaxIter is reached or some other stopping
criterion is satisfied. The default value of MaxIter is 20. Setting MaxIter = 0
returns the result of the startup procedure. The actual number of iterations
used is given by the property EstimationInfo.Iterations.

Tolerance: Based on the Gauss-Newton vector computed at the current
parameter value, an estimate is made of the expected improvement of the
criterion at the next iteration. When this expected improvement is less than
Tolerance%, the iterations are stopped. The default value is 0.01.

SearchDirection: The direction along which a line search is performed to find
a lower value of the criterion function. It can assume the following values:

• gn: The Gauss-Newton direction (inverse of the Hessian times the gradient
direction). If no improvement is found along this direction, the gradient
direction is also tried out.

• gns: A regularized version of the Gauss-Newton direction. Eigenvalues less
than pinvtol of the Hessian are neglected, and the Gauss-Newton direction
is computed in the remaining subspace. (pinvtol is part of the 'advanced'
field; see the Algorithm Properties reference page.)

Trace = Off No information is written to the screen.

Trace = On Information about criterion values and the search process is
given for each iteration.

Trace= Full The current parameter values and the search direction are
also given (except in the “free” SSParameterization case for
idss models).

3 Tutorial

3-38

• lm: The Levenberg-Marquardt method is used. This means that the next
parameter value is -pinv(H+d*I)*grad from the previous one, where H is the
Hessian, I is the identity matrix, and grad is the gradient. d is a number that
is increased until a lower value of the criterion is found.

• Auto: A choice between the above is made in the algorithm. This is the
default.

One property of the returned model is EstimationInfo, a structure that
contains useful information about the estimation process. See the
EstimationInfo reference page for a list of fields.

Another important option is InitialState. See “Initial State” on page 3-100.

For the spectral analysis estimate, you can compute the frequency functions at
arbitrary frequencies. If the frequencies are specified in a row vector, w, then

g = spa(z,M,w)

results in g being computed at these frequencies. You can generate
logarithmically spaced frequencies using the MATLAB logspace function. For
example,

w = logspace(-3,pi,128)

Defining Model Structures

3-39

Defining Model Structures
Because the System Identification Toolbox handles a wide variety of model
structures, it is important that these can be defined in a flexible way. In the
previous section you saw how models are automatically produced in the right
form by the various estimation routines, arx, iv4, oe, bj, armax, and pem, if you
just specify model orders and delays.

This section describes how model structures and models can be directly
defined. This might be required, for example, when you are creating a model
for simulation. It might be necessary to define model structures that are not of
black-box type, but contain more detailed internal structure, reflecting some
physical insights into how the system works.

The general way of representing models and model structures in the System
Identification Toolbox is by various model objects. This section introduces the
commands (apart from the parametric estimation functions themselves) that
create these models.

The model objects will contain a number of properties. For any model you can
type

get(m)

to see a list of the model’s properties, and

set(m)

to see what the assignable values are. See the get and set reference pages. You
can also easily retrieve each property value by subreferencing, as in

m.A

and set as in

m.b(3) = 27

See the idmodel reference page for complete property lists. Here only examples
are given. Note that it is sufficient to use any case-insensitive, unambiguous
abbreviation of the property names. Also, 'u' is short for 'input' and 'y' is
short for 'output'.

Polynomial Black-Box Models: the idpoly Model
The general input-output form (Equation 3-19)

3 Tutorial

3-40

(3-43)

is defined by the five polynomials A(q), B(q), C(q), D(q), and F(q). These are
represented in the standard MATLAB format for polynomials. Polynomial
coefficients are stored as row vectors ordered by descending powers. For
example, the polynomial

is represented as

A = [1 a1 a2 ... an]

Delays in the system are indicated by leading zeros in the polynomial. For
example, the ARX model

(3-44)

is represented by the polynomials

A = [1 -1.5 0.7]
B = [0 0 2.5 0.9]

The idpoly representation of (Equation 3-43) is now created by the command

m = idpoly(A,B,C,D,F,lam,T)

lam is the variance of the white noise source , and T is the sampling
interval. Trailing arguments can be omitted for default values. The system
(Equation 3-44) can, for example, be represented by

m = idpoly([1 -1.5 0.7],[0 0 2.5 0.9])

In the multiinput case (Equation 3-41), B and F are matrices whose row number
k corresponds to the kth input. For time series (no input signal), set B = [] and
F = []. (See “Time-Series Modeling” on page 3-93 for more details on time
series.) You can also use the command idpoly to define continuous-time
systems. See the idpoly reference page for details.

A q()y t() B q()
F q()
------------u t nk–() C q()

D q()
-------------e t()+=

A q() 1 a1q 1– a2q 2– … anq n–+ + + +=

B q()

y t() 1.5y t 1–()– 0.7y t 2–()+ 2.5u t 2–() 0.9u t 3–()+=

e t()

Defining Model Structures

3-41

When m is defined, the polynomials and their orders can be easily retrieved and
changed, as in

m.a % for the A-polynomial
roots(m.a)
m.a(3)=0.95

Process Models: the idproc Model
A process model is a continuous-time model that is characterized by

• Static gain Kp

• One or several time constants Tpk (called Tw and for time constant and
damping in the complex case)

• A possible process zero Tz

• A possible time delay (dead time) Td

• A possible enforced integration

This means that the models are transfer functions of the character

(3-45)

To name the different process models of interest, acronyms are used, built up
from the letters

• P for process model

• 0, 1, 2 or 3, depending on the number of poles

• D when a time-delay term is present

• Z when a process zero (numerator term) is present

• U when the poles are possibly underdamped (complex-valued poles)

• I when an integration is enforced

To illustrate this, for example,

• P1D for Equation 3-45

• P2ZU for

ζ

G s()
Kp

1 sTp1+
----------------------e

sTd–
=

e
sTd–

3 Tutorial

3-42

(3-46)

• P0ID for

(3-47)

• P3Z for

(3-48)

To define an idproc model, use the constructor

m = idproc('P1D')

where the acronym defines the character of the model. To estimate a process
model from data, use

me = pem(data,m)

for an idproc model m, or more simply

me = pem(data,'P1D')

See the reference page for idproc. The transfer function coefficients are
structures of the following kind: The parameters are called Kp, Tp1, Tp2, Tp3,
Tw, Zeta, Tz, and Td, as shown above. You retrieve them by

Kp = get(m,'Kp') or m.Kp

They are structures with the following fields:

• status: Assumes the values 'estimate', 'fixed', or 'zero' with obvious
interpretation

• min: Minimum value that this parameter is bounded from below by

• max: Maximum value that this parameter is bounded from below by

• value: Numerical value of the parameter

For models with several inputs, status is a cell array, and min, max, and value
are vectors of length equal to the number of inputs. Similarly, the acronym will

G s()
Kp 1 sTz+()

1 2sζTw sTw()2+ +
---=

G s()
Kp
s

-------e
sTd–

=

G s()
Kp 1 sTz+()

1 sTp1+() 1 sTp2+() 1 sTp3+()
---=

Defining Model Structures

3-43

be a cell array indicating the characters of the transfer functions associated
with the different inputs, as in {'P1D','P2ZI'}.

The values, status, and bounds for the parameters can be set by

set(m,'Kp',KC) or m.Kp = KC or m.Kp.value = 12 or m.Kp.status =
'fixed'

where KC is a structure with the correct fields. An extended syntax allows

m.Kp = 12 or m.Kp = 'fixed' or m.Kp = {'max',12}

for setting values (numerical values) and status (strings).

Similarly, at estimation time you can use

me = pem(data,'p1d','Kp',15)

to initialize the iterative search in this value, and

me = pem(data,'p1d','kp','fix','kp',12)

to fix the value of Kp to 12, and

me = pem(data,'p2z','kp',{'max',3},'kp',{'max',4})

to constrain the value of Kp to lie between 3 and 4.

Multivariable ARX Models: the idarx Model
A multivariable ARX model with nu inputs and ny outputs is given by

(3-49)

Here A(q) is an ny-by-ny matrix whose entries are polynomials in the delay
operator q-1. You can represent it as

(3-50)

 as well as the matrix

A q()y t() B q()u t() e t()+=

A q() Iny A1q 1– … Anaq na–+ + +=

3 Tutorial

3-44

(3-51)

where the entries are polynomials in the delay operator .

(3-52)

This polynomial describes how old values of output number j affect output
number k. Here is the Kronecker-delta; it equals 1 when ; otherwise,
it is 0. Similarly, is an ny-by-nu matrix

(3-53)

or

(3-54)

with

The delay from input number j to output number k is . To link with the
structure definition in terms of na, nb, and nk in the arx and iv4 commands,
note that na is a matrix whose kj element is , while the kj elements of nb
and nk are and , respectively.

The idarx representation of the model (Equation 3-49) can be created by

m = idarx(A,B)

where A and B are 3-D arrays of dimensions ny-by-ny-by-(na+1) and
ny-by-nu-by-(nb+1), respectively, that define the matrix polynomials
(Equation 3-50) and (Equation 3-53).

A q()

a11 q() a12 q() … a1ny q()

a21 q() a22 q() … a2ny q()

… … … …
any1 q() any2 q() … anyny q()

=

akj q 1–

akj q() δkj akj
1 q 1– … akj

nakjq
nakj–

+ + +=

δkj k j=
B q()

B q() B0 B1q 1– …Bnbq nb–+ +=

B q()

b11 q() b12 q() … b1nu q()

b21 q() b22 q() … b2nu q()

… … … …
bny1 q() bny2 q() … bnynu q()

=

bkj q() bkj
1 q

nkkj–
… bkj

nbkjq
nkkj nbkj– 1+–

+ +=

nkkj

nakj
nbkj nkkj

Defining Model Structures

3-45

A(:,:,k+1) = Ak
B(:,:,k+1) = Bk

Note that A(:,:,1) is always the identity matrix, and that leading zero
coefficients in B matrices define the delays.

Consider the following system with two outputs and three inputs:

which in matrix notation can be written as

This system is defined and simulated for a certain input u, and then estimated
in the correct ARX structure by the following commands:

A(:,:,1) = eye(2);
A(:,:,2) = [-1.5 0.4; -0.2 0];
A(:,:,3) = [0.7 0 ; 0.01 -0.7];
B(:,:,1) = [0 0.4 0;1 0 0];
B(:,:,2) = [0 -0.1 0;0 0 3];
B(:,:,3) = [0 0.15 0;0 0 4];
B(:,:,4) = [0 0 0;0 0 0];
B(:,:,5) = [0.2 0 0;0 2 0];
B(:,:,6) = [0.3 0 0;0 0 0];
m0 = idarx(A,B);
u = iddata([], idinput([200,3]));
e = iddata([], randn(200,2));
y = sim(m0, [u e]);

y1 t() 1.5y1 t 1–()– 0.4y2 t 1–() 0.7y1 t 2–()+ + =

0.2u1 t 4–() 0.3u1 t 5–() 0.4u2 t() 0.1u2 t 1–()– 0.15u2 t 2–() e1 t()+ + + +

y2 t() 0.2y1 t 1–()– 0.7y2 t 2–()– 0.01y1 t 2–()+ =

u1 t() 2u2 t 4–() 3u3 t 1–() 4u3 t 2–() e2 t()+ + + +

y t() 1.5– 0.4
0.2– 0

y t 1–() 0.7 0
0.01 0.7–

y t 2–()+ + 0 0.4 0
1 0 0

u t() +=

0 0.1– 0
0 0 3

u t 1–() 0 0.15 0
0 0 4

u t 2–() 0 0 0
0 0 0

u t 3–()+ + +

0.2 0 0
0 2 0

u t 4–() 0.3 0 0
0 0 0

u t 5–()+

3 Tutorial

3-46

na = [2 1;2 2];
nb = [2 3 0;1 1 2];
nk = [4 0 0;0 4 1];
me = arx([y u],[na nb nk])
me.a % The estimated A-polynomial

Black-Box State-Space Models: the idss Model
The basic state-space models are the following ones. (See also “State-Space
Models” on page 3-32.)

Discrete-Time Innovations Form

(3-55)

Here T is the sampling interval, is the input at time instant , and
 is the output at time . (See Ljung (1999), page 99.)

System Dynamics Expressed in Continuous Time

(3-56)

(See Ljung (1999), page 93.) It is often easier to define a parameterized
state-space model in continuous time because physical laws are most often
described in terms of differential equations. The matrices F, G, H, and D
contain elements with physical significance (for example, material constants).
The numerical values of these might or might not be known. To estimate
unknown parameters based on sampled data (assuming T is the sampling
interval), first transform (Equation 3-56) to (Equation 3-55) using the formulas
of (Equation 3-27). The value of the Kalman gain matrix K in (Equation 3-55)
or in (Equation 3-56) depends on the assumed character of the additive
noises and in (Equation 3-25) and its continuous-time counterpart.
Disregard that link and view K in (Equation 3-55) (or in (Equation 3-56)) as
the basic tool to model the disturbance properties. This gives the directly
parameterized innovations form. (See Ljung (1999), page 99.) If the internal
noise structure is important, you could use user-defined gray-box structures
(the idgrey object) as in “Parameterized Disturbance Models” on page 3-53.

x kT T+() Ax kT() Bu kT() Ke kT()+ += a()
y kT() Cx kT() Du kT() e kT()+ += b()

x 0() x0= c()

u kT() kT
y kT() kT

x· t() Fx t() Gu t() K̃w t()+ +=
y t() Hx t() Du t() w t()+ +=
x 0() x0=

K~

w t() e t()
K~

Defining Model Structures

3-47

You can put the discrete-time model (Equation 3-55) into the idss model by

m = idss(A,B,C,D,K,X0,'Ts',T)

For the continuous-time model (Equation 3-56), use

m = idss(F,G,H,D,Kt,X0,'Ts',0)

Setting the sampling interval Ts to zero thus means a continuous-time model.
You can now use the model m for simulation and examine it using the various
commands. The parameterization of the matrices is by default free; that is, any
elements in the matrices are freely adjustable by the estimation routines. The
parameters are adjusted to data by

me = pem(Data,m)

The iterative search for the best fit is then initialized in the nominal matrices
A, B, C, D, K, X0. Note that the command me = pem(Data,4), which just defines
the model order, first estimates a starting model m (using n4sid), from which
the search is initialized.

In this free parameterization, you can decide how to deal with the disturbance
model matrix K. Letting

m.DisturbanceModel = 'None'

(rather than 'Estimate') fixes the K matrix to zero, thereby creating an
output-error model.

Letting

m.InitialState ='zero'

(rather than 'Estimate') sets the initial state vector x0 to zero.

The property nk determines the delays from the different inputs just as for
idpoly models. Thus

m.nk = [0,0,...,0]

(no delays) means that all elements of the D matrix should be estimated, while

m.nk = [1,1,..,1]

fixes the D matrix to zero.

With the parameterization of A, B, and C being completely free, a basis for the
state-space realization is automatically selected to give well-conditioned

3 Tutorial

3-48

calculations. An alternative is to specify an observer canonical form for A, B, C
by

m.sspar = 'Canonical'

(rather than 'Free'). This is still a black-box model, because the canonical
form covers all models of a certain order. The structure modifications can all be
combined at the estimation call

me = pem(Data,m,'sspar','can','dist','none','ini','z')

which is the same as

set(m,'sspar','can','dist','none','ini','z')
me = pem(Data,m);

Structured State-Space Models with Free
Parameters: the idss Model
The System Identification Toolbox allows you to define arbitrary
parameterizations of the matrices in (Equation 3-55) or (Equation 3-56). To
define the structure, so-called structure matrices are used. These are shadow
matrices to A, B, C, D, K, and X0, have the same sizes, and coincide with these at
all matrix elements that are known. The structure matrices are denoted by As,
Bs, Cs, Ds, Ks, and X0s and have the entry NaN at those elements that
correspond to unknown parameters to be estimated.

For example,

m.As = [NaN 0;0 NaN]

sets the structure matrix for A, called As, to a diagonal matrix, where the
diagonal elements are freely adjustable. Defining

m.A = [2 0; 0 3]

sets the nominal/initial values of these diagonal elements to 2 and 3,
respectively.

Example 1: A Discrete-Time Structure. Consider the discrete-time model

Defining Model Structures

3-49

with five unknown parameters , i = 1,...,5. Suppose the nominal/initial
values of these parameters are -1, 2, 3, 4, and 5. This structure is then defined
by

m = idss([1, -1;0, 1],[2;3],[1,0],0,[4;5])
m.As = [1, NaN; 0 ,1];
m.Bs = [NaN;NaN];
m.Cs = [1, 0];
m.Ds = 0;
m.Ks = [NaN;NaN];
m.x0s = [0;0];

The definition thus follows in two steps. First the nominal model is defined.
Then the structure (known and unknown parameter values) is defined by the
structure matrices As, Bs, etc. The command setstruc makes the above syntax
more efficient.

Example 2: A Continuous-Time Model Structure. Consider the following model
structure:

This corresponds to an electrical motor, where is the angular
position of the motor shaft and is the angular velocity. The

x t 1+() 1 θ1

0 1
x t()

θ2

θ3

u t()
θ4

θ5

e t()+ +=

y t() 1 0 x t() e t()+=

x 0() 0
0

=

θi

x· t() 0 1
0 θ1

x t() 0
θ2

u t()+=

y t() 1 0
0 1

x t() e t()+=

x 0() θ3

0
=

y1 t() x1 t()=
y2 t() x2 t()=

3 Tutorial

3-50

parameter is the inverse time constant of the motor and is the
static gain from the input to the angular velocity. (See Example 4.1 in Ljung
(1999).) The motor is at rest at time 0 but at an unknown angular position.
Suppose that is around -1 and is around 0.25. If you also know that the
variance of the errors in the position measurement is 0.01 and in the angular
velocity measurements is 0.1, you can then define an idss model using

m = idss([0 1;0 ...
-1],[0;0.25],eye(2),[0;0],zeros(2,2),[0;0],'Ts',0)

m.as = [0 1; 0 NaN]
m.bs = [0 ;NaN]
m.cs = m.c
m.ds = m.d
m.ks = m.k
m.x0s = [NaN;0]
m.noisevar = [0.01 0; 0 0.1]

You can now use the structure m to estimate the unknown parameters from
observed data

Data = iddata([y1 y2], u, 0.1)

by

model = pem(Data,m)

The iterative search for minimum is then initialized at the parameters in the
nominal model m. The continuous-time model is automatically sampled to agree
with the sampling interval of the data. You can also use the structure to
simulate the system above with sampling interval T = 0.1 for input u and noise
realization e.

e = randn(300,2)
u = idinput(300);
simdat = iddata([],[u e],'Ts',0.1);
y = sim(m,simdat) % The continuous system will automatically be

% sampled using Ts = 0.1.

The nominal parameter values are used, and the noise sequence is scaled
according to the matrix m.noisevar.

When estimating models, you can try a number of neighboring structures, such
as “What happens if I fix this parameter to a certain value?” or “What happens
if I free these parameters?” This is easily handled by the structure matrices As,

θ1– θ2 θ1⁄–

θ1 θ2

θi

Defining Model Structures

3-51

Bs, etc. For example, to free the parameter x2(0) (perhaps the motor wasn’t at
rest after all), you can use

model = pem(Data,m,'x0s',[NaN;NaN])

To manipulate initial conditions, the function init is also useful.

State-Space Models with Coupled Parameters: the
idgrey Model
In some situations you might want the unknown parameters in the matrices in
(Equation 3-55) or (Equation 3-56) to be linked to each other. Then the NaN
feature is not sufficient to describe these links. Instead you need to do some
gray-box modeling and write an M-file that describes the structure. The format
is

[A,B,C,D,K,x0] = mymfile(par,T,aux);

where mymfile is the user-defined name for the M-file, par contains the
parameters as a column vector, T is the sampling interval, and aux contains
auxiliary variables. The latter variables are used to house options, so that you
can try out some different cases without your having to edit the M-file. The
matrices A, B, C, D, K, and x0 refer either to the continuous-time description
(Equation 3-56) or to the discrete-time description (Equation 3-55). When a
continuous-time description is fitted to sampled data, the estimation routines
perform the necessary sampling of the model. To obtain the same structure as
in “Example 2: A Continuous-Time Model Structure” you can do the following:

function [A,B,C,D,K,x0] = mymfile(par,T,aux)
A = [0 1; 0 par(1)];
B = [0;par(2)];
C = eye(2);
D = zeros(2,2);
K = zeros(2,1);
x0 =[par(3);0];

Once you have written the M-file, the idgrey model m is defined by

m = idgrey('mymfile',par,'c',aux);

where par contains the nominal (initial) values of the corresponding entries in
the structure. 'c' signals that the underlying parameterization is continuous

3 Tutorial

3-52

time. aux contains the values of the auxiliary parameters. Note that T and aux
must be given as input arguments, even if they are not used by the code.

From here on, estimate models and evaluate results as for any other model
structure. Some further examples of user-defined model structures are given
below.

Some Examples of idgrey Model Structures
With user-defined structures, you have complete freedom in the choice of
models of linear systems. This section gives two examples of such structures.

Heat Diffusion. Consider a system driven by the heat-diffusion equation (see also
Example 4.3 in Ljung (1999)).

This is a metal rod with a heat-diffusion coefficient , which is insulated at the
near end and heated by the power u (W) at the far end. The output of the
system is the temperature at the near end. This system is described by a partial
differential equation in time and space. Replacing the space-second derivative
by a corresponding difference approximation gives a continuous-time
state-space model (Equation 3-56), where the dimension of x depends on the
grid size in space used in the approximation. It is also desirable to be able to
work with different grid sizes without having to edit the model file. This is
described by the following M-file:

function [A,B,C,D,K,x0] = heatd(pars,T,aux)
Ngrid = aux(1); % Number of points in the space-discretization
L = aux(2); % Length of the rod
temp = aux(3); % Assuming uniform initial temperature of the rod
deltaL = L/Ngrid; % Space interval
kappa = pars(1); % The heat-diffusion coefficient
htf = pars(2); % Heat transfer coefficient at far end of rod
A = zeros(Ngrid,Ngrid);
for kk = 2:Ngrid-1
A(kk,kk-1) = 1;
A(kk,kk) = -2;
A(kk,kk+1) = 1;
end
A(1,1) = -1; A(1,2) = 1; % Near end of rod insulated
A(Ngrid,Ngrid-1) = 1;
A(Ngrid,Ngrid) = -1;
A = A∗kappa/deltaL/deltaL;

κ

Defining Model Structures

3-53

B = zeros(Ngrid,1);
B(Ngrid,1) = htf/deltaL;
C = zeros(1,Ngrid);
C(1,1) = 1;
D = 0;
K = zeros(Ngrid,1);
x0 = temp∗ones(Ngrid,1);

You can then define the model by

m = idgrey('heatd',[0.27 1],'c',[10,1,22])

for a tenth-order approximation of a heat rod one meter in length with an
initial temperature of 22 degrees. The initial estimate of the heat conductivity
is 0.27, and of the heat transfer coefficient is 1.

The model parameters are estimated by

me = pem(Data,m)

If you would like to try a finer grid, that is, take Ngrid larger, you can do this
easily with

me = pem(Data,m,'Filearg',[20,1,22])

Parameterized Disturbance Models. Consider a discrete-time model

where w and e are independent white noises with covariance matrices R1 and
R2, respectively. Suppose that you know the variance of the measurement
noise R2, and that only the first component of is nonzero. This can be
handled by the following M-file:

function [A,B,C,D,K,x0] = mynoise(par,T,aux)
R2 = aux(1); % The assumed known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
D = 0;
R1 = [par(5) 0;0 0];
K = A∗dlqe(A,eye(2),C,R1,R2); % From the Control System Toolbox
x0 = [0;0];

x t 1+() Ax t() Bu t() w t()+ +=
y t() Cx t() e t()+=

w t()

3 Tutorial

3-54

State-Space Structures: Initial Values and Numerical
Derivatives
For a structured state-space model, it is sometimes difficult to find good initial
parameter values at which to start the numerical search for a minimum of
(Equation 3-38). It is always best to use physical insight, whenever possible, to
suggest such values. For random initialization, the command init is useful.
Because there is always a risk that the numerical minimization can get stuck
in a local minimum, it is advisable to try several different initialization values
for .

In the search for the minimum, the gradient of the prediction errors with
respect to the parameters is computed by numerical differentiation. The step
size is determined by the M-file nuderst. In its default version, the step size is
simply times the absolute value of the parameter in question (or the
number if this is larger). When the model structure contains parameters
with different orders of magnitude, try to scale the variables so that the
parameters are all roughly the same magnitude. You might need to edit the
M-file nuderst to address the problem of suitable step sizes for numerical
differentiation.

Estimating Continuous-Time Models: General
Remarks
In many cases you want to estimate a continuous-time model. The System
Identification Toolbox gives several ways for you to do this:

• Estimate a discrete-time model, and convert it to continuous time, using the
command d2c. Note that the estimated model contains information about the
input intersample properties of the estimation data, and the conversion, by
default, will be in accordance with this information. If a polynomial type
model (idpoly model) is estimated, you can choose the number of numerator
and denominator coefficients freely for the discrete-time model. Note,
however, that the transformed continuous-time model generically has a
numerator order that is one less than (or equal to, if nk = 0) the denominator
order, regardless of the discrete-time orders.

m = oe(data,[3 4 1]);
mc = d2c(m)

• Use continuous-time frequency-domain data and directly estimate an idpoly
continuous-time model. Then you can choose the numerator and

θ

e t()

10 4–

10 7–

Defining Model Structures

3-55

denominator orders freely. In the case below it is assumed that the data is
sampled so fast (or that the input is band limited) that frequencies above the
Nyquist frequency in the continuous-time input are negligible.

DF = fft(data)
DF.ts = 0 (% treating the frequency data as continuous time)
m = oe(DF,[nb nf])

Here nb is the number of numerator coefficients and nf the number of
denominator coefficients. The delay order, nk, has no meaning for
continuous-time OE models, and should be omitted. This means that for
nb = 2, nf = 4 the model is

(3-57)

If the data is sampled fast, it is usually a good idea to apply some lowpass
filtering before making the fit. This is most easily done with the focus
property.

m = oe(DF,[nb nf],'focus',[0 10])

meaning that only data in the frequency interval between 0 and 10 rad/s is
used in the model estimation.

Of course, you can also use continuous-time frequency-domain data to
estimate continuous-time state-space models.

m = pem(DF,n)

This gives an nth-order continuous-time state-space model with no direct
term (D matrix = 0). To include a D matrix, indicate that the relative degree
nk is zero.
m = pem(DF,n,'nk',0)

• Use continuous-time process models as described in “Process Models: the
idproc Model” on page 3-41.
m = pem(data,'P1D')

• Build a continuous-time idgrey model as described in “State-Space Models
with Coupled Parameters: the idgrey Model” on page 3-51, and in Example
3.3 on page 3-52.

G s()
b1s b2+

s4 f1s3 f2s2 f3s f4+ + + +
---=

3 Tutorial

3-56

• Build a continuous-time idss model either in structured or in free form as
described in “Black-Box State-Space Models: the idss Model” on page 3-46.

In the latter three cases you can directly estimate the continuous-time model
from discrete-time data (or continuous-time frequency-domain data) without
further information, because the iddata object contains all relevant
information to adjust the model to the data.

m = pem(Data,mi)

If you create a state-space model at the same time as you estimate it, you
must, however, indicate whether you want to obtain a continuous-time
model.

m = n4sid(Data,5,'Ts',0)
m = pem(Data,5,'Ts',0,'ss','can')

In the pem example, the ('ss','can') property name/property value pair
means that the state-space parameterization ('SSparameterization') is
'Canonical'. Estimation of freely parameterized continuous-time
state-space models is not supported.

Examining Models

3-57

Examining Models
Once you have estimated a model, you need to investigate its properties. You
have to simulate it, test its predictions, and compute its poles and zeros and so
on. You thus have to transform the model to various ways of representing and
presenting it. This section deals with how this is done. The following topics are
covered:

• Parametric models: basic use, accessing properties, simulation, and
prediction. Also manipulating channels, in particular the noise input
channels.

• Frequency-domain models

• Graphing model properties

• Transformations to other representations

• Transformations between continuous and discrete time

Parametric Models: idmodel and Its Children
idmodel is an object that you do not deal with directly. It contains all the
common properties of the model objects idarx, idgrey, idpoly, idproc, and
idss, which are returned by the different estimation routines.

Basic Use
If you just estimate models from data, the model objects should be transparent.
All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m gives a brief
account of the model. present(m) also gives information about the
uncertainties of the estimated parameters. get(m) gives a complete list of
model properties.

Most of the interesting properties can be directly accessed by subreferencing.

m.a
m.da

See the property list obtained by get(m), as well as the property lists of idgrey,
idarx, idpoly, idproc, and idss, in Chapter 4, “Function Reference,” for more
details on this.

3 Tutorial

3-58

You can directly examine and display the characteristics of the model m by
using commands like impulse, step, bode, nyquist, and pzmap. Use commands
like compare and resid to assess the quality of the model. If you have the
Control System Toolbox, typing view(m) gives you access to various display
functions. More details about this are given below.

To extract state-space matrices, transfer function polynomials, etc., you can
use these commands:

arxdata, polydata, tfdata, ssdata, zpkdata

To compute the frequency response of the model, you can use idfrd and
freqresp.

Simulation and Prediction
Any idmodel m can be simulated with

y = sim(m,Data)

where Data is an iddata object with just input channels.

Data = iddata([],[u v])

The number of input channels must either be equal to the number of measured
input channels in m, in which case a noise-free simulation is obtained, or equal
to the sum of the number of input and output channels in m. In the latter case
the last input signals (v) are interpreted as white noise. They are then scaled
by the NoiseVariance matrix of m and added to the output via the disturbance
model

where the matrix L is given from the noise covariance by .

L=chol(m.NoiseVariance)'

The output is returned as an iddata object with just output channels. Here is
a typical string of commands.

A = [1 -1.5 0.7];
B = [0 1 0.5];
m0 = idpoly(A,B,[1 -1 0.2]);
u = iddata([],idinput(400,'rbs',[0 0.3]));

y Gu He+=
e Lv=

Λ Λ LLT=

Examining Models

3-59

v= iddata([],randn(400,1));
y = sim(m0, [u v]);
plot(y)

The inverse model (Equation 3-38), which computes the prediction errors from
given input-output data, is simulated with

e = pe(m,[y u])

To compute the k-step-ahead prediction of the output signal based on a model
m, the procedure is as follows:

yhat = predict(m,[y u],k)

The predicted value is computed using the information in up to
time and information in up to time . The actual way that
the information in past outputs is used depends on the disturbance model in m.
For example, an output-error model (that is, H = 1 in (Equation 3-10))
maintains that there is no information in past outputs; therefore, predictions
and simulations coincide.

predict can evaluate how well a time-series model is capable of predicting
future values of the data. In this example y is the original series of monthly
sales figures. A model is estimated based on the first half, and then its ability
to predict half a year ahead is tested on the second half of the observations.

plot(y)
y1 = y(1:48), y2 = y(49:96)
m4 = ar(y1,4)
yhat = predict(m4,y2,6)
plot(y2,yhat)

The command compare is useful for any comparisons involving sim and
predict.

Dealing with Input and Output Channels
For multivariable models, you construct submodels each containing a subset of
inputs and outputs by simple subreferencing. The outputs and input channels
can be referenced according to

m(outputs,inputs)

ŷ t t k–() u s()
s t= y s() s t k–=

3 Tutorial

3-60

Use the colon (:) to denote all channels and the empty matrix ([]) to denote no
channels. The channels can be referenced by number or by name. For several
names, you must use a cell array.

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])

Thus m3 is the model obtained from m by considering the transfer functions from
input numbers 1 and 4 (with input names 'power' and 'speed') to output
number 3 (with name 'position').

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when you want a plot of just some
channels.

Noise Channels
The estimated models have two kinds of input channels: the measured inputs
u and the noise inputs e. For a general linear model m,

(3-58)

where u is the nu-dimensional vector of measured input channels and e is the
ny-dimensional vector of noise channels. The covariance matrix of e is given by
the property 'NoiseVariance'. Occasionally this matrix is written in
factored form:

This means that e can be written as

where v is white noise with identity covariance matrix (independent noise
sources with unit variances).

y t() G q()u t() H q()e t()+=

Λ

Λ LLT=

e Lv=

Examining Models

3-61

If m is a time series (nu = 0), G is empty and the model is given by

(3-59)

For the model m in (Equation 3-58), the restriction to the transfer function
matrix G is obtained by

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input. m2 is
given by (Equation 3-59).

For a system with measured inputs, bode, step, and many other
transformation and display functions just deal with the transfer function
matrix G. To obtain or graph the properties of the disturbance model H, it is
therefore important to make the transformations m('n'). For example,

bode(m('n'))

will plot the additive noise spectra according to the model m, while

bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it might be useful to convert
the noise channels to measured channels, using the command noisecnv:

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and noise
sources e, being treated as measured signals. That is, m3 is a model from u and
e to y, describing the transfer functions G and H. The information about the
variance of the innovations e is then lost. For example, studying the step
response from the noise channels does not take into consideration how large
the noise contributions actually are.

To include that information, you should normalize e first, , so that
becomes white noise with an identity covariance matrix.

m4 = noisecnv(m,'Norm')

y t() H q()e t()=

e Lv= v

3 Tutorial

3-62

This creates a model m4 with and treated as measured signals.

For example, the step responses from v to y will now also reflect the typical size
of the disturbance influence because of the scaling by L. In both these cases,
the previous noise sources that have become regular inputs will automatically
get input names that are related to the corresponding output. The
unnormalized noise sources e have names like 'e@y1' (noise e at output
channel with name y1), while the normalized sources v are called 'v@y1'.

Retrieving Transfer Functions
The functions that retrieve transfer function properties, ssdata, tfdata, and
zpkdata, will thus work as follows for a model (Equation 3-58) with measured
inputs. (fcn is any of ssdata, tfdata, or zpkdata.)

• fcn(m) returns the properties of G (ny outputs and nu inputs).

• fcn(m('n')) returns the properties of the transfer function H (ny outputs
and ny inputs).

• fcn(noisecnv(m)) returns the properties of the transfer function [G H] (ny
outputs and ny+nu inputs).

• fcn(noisecnv(m,'Norm')) returns the properties of the transfer function
[G HL} (ny outputs and ny+nu inputs). Analogously,
fcn(noisecnv(m('n'),'Norm'))

returns the properties of the transfer function HL (ny outputs and ny inputs).

• If m is a time-series model, fcn(m) returns the properties of H, while
fcn(noisecnv(m,'Norm'))

returns the properties of HL.

Note that the estimated covariance matrix NoiseVariance itself is uncertain.
This means that the uncertainty information about H is different from that of
HL.

idmodel Properties
See the idmodel reference page for a complete list of idmodel properties.

u v

y t() G q()u t() H q()Lv t()+ G HL
u
v

= =

Examining Models

3-63

Adding Channels
m = [m1,m2,...,mN]

creates an idmodel object m, consisting of all the input channels in m1,... mN.
The output channels of mk must be the same. Analogously,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1, m2,...,
mN. The input channels of mk must all be the same.

If you have the Control System Toolbox, you can create interconnections
between idmodels, like G1+G2, G1*G2, append(G1,G2), feedback(G1,G2), etc.,
just as for LTI objects. However, covariance information is typically lost.

Frequency Function Format: the idfrd Model
Frequency functions and spectra are stored as an idfrd (Identified Frequency
Response Data) model object (which is not a child of idmodel). This model
format is used by spa,spafdr, and etfe to deliver their results. Moreover, any
idmodel can be transformed to an idfrd object.

The frequency function and the disturbance spectrum corresponding to an
idmodel m are computed by

h = idfrd(m)

This gives G and in (Equation 3-11) along with their estimated covariances,
which are translated from the covariance matrix of the estimated parameters.
The frequencies can be specified as in h = idfrd(m,w), but otherwise a default
choice of frequencies (based on the dynamics of m) is used. If m corresponds to a
continuous-time model, the frequency functions are computed accordingly.

Φ
ˆ

v

3 Tutorial

3-64

You retrieve the functions using h.ResponseData, h.CovarianceData,
h.SpectrumData, and h.NoiseCovariance, or any case-insensitive
abbreviation of the names. The frequency vector is contained in h.Frequency.

In addition, you can define an idfrd model directly from the frequency
functions. See the idfrd reference page, which also contains a list of idfrd
properties. The channels of an idfrd model can be manipulated analogously to
idmodels.

An alternative is to compute the response functions without storing them as
idfrd objects:

[Response,Frequency,Covariance] = freqresp(m)

Graphs of Model Properties
There are several commands in the toolbox for graphing model characteristics.

• bode
• compare
• ffplot
• impulse
• nyquist
• pzmap
• step

They all have the same basic syntax. To look at one model, use

command(Model)

where command is any of the functions listed above.

command(Mod1,Mod2,...,ModN)

shows a comparison of several models. Modk can be any idmodel models. They
can be used with any of the Control System Toolbox’s LTI models. For some
commands Modk can also be idfrd and iddata objects. For multivariable
models, the plots are grouped so that each input/output channel (for all models)
is plotted together. The InputName and OutputName properties of the models
are used for this. The number of channels need not be the same in the different
models, which is quite useful when you are trying to find a good model of a
multivariable system.

command(Mod1,PlotStyle1,...,ModN,PlotStyleN)

Examining Models

3-65

allows you to define colors, line styles, and markers associated with the
different models. PlotStyle takes values such as 'b' (for blue), 'b:' (for a blue
dotted line), or 'b*-' (for a blue solid line with the points marked by a star).
This is the same as for the usual plot command.

To show the uncertainty of the model characteristics, use

command(Mod1,...,ModN,'sd',SD)

The plot will show dash-dotted lines that mark a confidence region around the
nominal model corresponding to SD standard deviations (for the Gaussian
distribution). This region is computed using the estimated covariance matrix
for the estimated parameters.

command(Mod1,...,ModN,'sd',SD,'fill')

shows the uncertainty region as a filled region instead.

The commands have some further options to select time or frequency ranges.
See the detailed descriptions in Chapter 4, “Function Reference.”

If Model contains measured input channels, the plot shows just the transfer
functions from these measured inputs to the outputs, that is, G in
(Equation 3-58). To graph the response from the noise sources, use

command(Model('n'))

For the frequency-response graphs, this shows the additive disturbance
spectra, that is, the spectra of the signal H(q)e(t) in Equation 3-58, so that the
properties of the noise source e are included in the plot.

For the other graphs, the properties of the transfer function H are shown. That
is, no noise normalization is done. The same is true if Model is a time series and
has no measured input channels. That means that, for example, step shows
the step response of the transfer function H, without accounting for the size
(covariance matrix) of e. To include such effects, the disturbances should first
be converted to normalized noise sources, using the command noisecnv. See
“Noise Channels” on page 3-60.

Model Output
An important and visually suggestive plot is to compare the measured output
signal with the models’ simulated or predicted outputs. You do this using

compare(Data,model)

3 Tutorial

3-66

The input signal in Data is used by the models to simulate the output. This
simulated output is shown together with the measured output, which reveals
what features in the data the model can and cannot reproduce. A legend shows
the fit between the signals, in terms of how much of the output variation is
reproduced by the models.

Frequency Response
Three functions offer graphic display of the frequency functions and spectra:
bode, ffplot, and nyquist.

bode(G)

plots the Bode diagram of G (logarithmic scales and frequencies in rad/s). If G is
a spectrum, only an amplitude plot (the power spectrum) is given. Here G can
be any idmodel or idfrd object.

The command ffplot has the same syntax as bode but works with linear
frequency scales and Hertz as the unit. The command nyquist also has the
same syntax, but produces Nyquist plots, that is, graphs of the frequency
function in the complex plane.

Transient Response
The impulse and step responses of the models are shown by

impulse(Model)

and

step(Model)

impulse and step follow the general syntax, but can also accept iddata objects
as arguments. For direct estimation of step and impulse responses from data,
use the procedure described in “Estimating Impulse Responses” on page 3-15.

Zeros and Poles
The zeros and poles are graphed by

pzmap(Model)

This gives a plot with 'x' marking poles and 'o' marking zeros. Otherwise,
pzmap follows the general syntax.

Examining Models

3-67

General
If you have the Control System Toolbox,

view(Model)

opens the LTI viewer with access to a number of model displays. No
uncertainty information can be shown, however.

Transformations to Other Model Representations
Within the structure in which the model was created, you can extract
parametric information using the get function or by subscripting. For example,
for a state-space model, Mod.A is the A matrix, while Mod.dA contains its
standard deviations. For a polynomial model, Mod.a and Mod.da are the A
polynomial and its standard deviation.

Generally speaking you can transform to another representation by just using
the object constructor, as in

modss = idss(Model)
modp = idpoly(Model)

Analogously, if you have the Control System Toolbox, you can freely transform
between the different idmodel objects and the LTI objects.

syss = ss(Model)
systf = tf(Model)
Model = idss(Ltisys)

In addition, regardless of the particular model structure, there are a number of
commands that compute various model representations. These all have the
basic syntax

[G, dG] = command(Model)

where G contains model characteristics and dG their standard deviation or
covariance. The transformation commands are

[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(Model)

[a,b,c,d,f,da,db,dc,dd,df] = polydata(Model)

[A,B,dA,dB] =arxdata(Model)

[Num,Den,dNum,dDen] = tfdata(Model)

3 Tutorial

3-68

[Z,P,K,CovZ,CovP,covK] = zpkdata(Model)

G = idfrd(Model)

[H,w,CovH] = freqresp(Model)

The two last commands were described previously. The three first commands
clearly transform to the state-space, the polynomial, and the multivariable
ARX representations. See “Defining Model Structures” on page 3-39. tfdata
and zpkdata compute the transfer functions and zeros, poles, and transfer
function gains. See Chapter 4, “Function Reference,” for details.

Discrete- and Continuous-Time Models

Continuous-Time Models
Continuous-time models are created and recognized by the property 'Ts' = 0.
You can create and analyze all idmodel objects as continuous-time models by
setting Ts equal to zero at the time of creation, as in

m = idpoly(1,[0 1 1],1,1,[1 2 3],'Ts',0)

for the model

All model characteristics are then computed and graphed for the
continuous-time representation. Time and frequency scales are determined
based on the dynamics of the system (the pole/zero locations).

For simulation and prediction, the continuous-time models are first converted
to discrete time, using the sampling interval and intersample behavior of the
data.

Estimating Continuous-Time Models
The estimation routines support the estimation of continuous-time state-space
models in several different ways. This was described in “Estimating
Continuous-Time Models: General Remarks” on page 3-54.

The major reason for identifying continuous-time models is to secure a
particular structure of the continuous-time state-space matrices. This would
typically reflect a physical interpretation or some gray-box modeling work

y s 1+

s2 2s 3+ +
----------------------------u e+=

Examining Models

3-69

done, as for the process models, described in “Process Models: the idproc Model”
on page 3-41, or continuous-time idss or idgrey models, as described in
“Black-Box State-Space Models: the idss Model” on page 3-46.

Transformations
Transformations between continuous-time and discrete-time model
representations are performed by c2d and d2c. Note that it is not sufficient just
to assign a new value of Ts to the model object. The corresponding uncertainty
measure (the estimated covariance matrix of the internal parameters) is also
transformed in most cases. The syntax is

modc = d2c(modd)
modd = c2d(mc,T)

The transformation c2d also offers an optional output argument that describes
how the initial state should be transformed.

If the discrete-time model has some pure time delays (), the default
command removes them before forming the continuous-time model, and
appends them using the property InputDelay in model modc. This property is
used to add appropriate phase lag and shift the data whenever the model is
used. d2c also offers an option to approximate the dead time by a finite
dimensional system. Note that the disturbance properties are translated by the
somewhat questionable formula (Equation 3-29). The covariance matrix is
translated by the Gauss approximation formula using numerical derivatives.
The M-file nuderst is then invoked. You might want to edit it for applications
where the parameters have very different orders of magnitude. See the
comments in “State-Space Structures: Initial Values and Numerical
Derivatives” on page 3-54.

Here is an example that compares the Bode plots of an estimated model and its
continuous-time counterpart.

m= armax(Data,[2 3 1 2]);
mc = d2c(m); bode(m,mc)

The transformations between discrete and continuous time depend on the
intersample behavior of the input. The formulas are different if the input is
assumed to be piecewise constant or piecewise linear between samples ('zoh'
or 'foh'). For estimated discrete-time models, the input properties of the
estimation data are used for this purpose, by default. To override this, add an
extra argument, as described in the reference pages for c2d and d2c.

nk 1>

3 Tutorial

3-70

Model Structure Selection and Validation
After you have been analyzing data for some time, you typically end up with a
large collection of models with different orders and structures. You need to
decide which one is best, and whether the best description is an adequate
model for your purposes. These are the problems of model validation.

Model validation is the heart of the identification problem, but there is no
absolute procedure for approaching it. It is wise to be equipped with a variety
of different tools with which to evaluate model qualities. The command advice
can be applied to any estimated model for some hints on the model’s quality.

advice(Model)

This section describes the techniques you can use to evaluate model qualities
using the System Identification Toolbox.

Comparing Different Structures
It is natural to compare the results obtained from model structures with
different orders. For state-space models, you can easily obtain this by using a
vector argument for the order in n4sid or pem.

m = n4sid(Data,1:10)
m = pem(Data,'nx',3:15)

This invokes a plot from which a best order is chosen. If you omit the order
argument, m = n4sid(Data) or pem(Data) makes a default choice of the best
order.

For models of ARX type, various orders and delays can be efficiently studied
with the command arxstruc. Collect in a matrix NN all the ARX structures you
want to investigate, so that each row of NN is of the type

[na nb nk]

With

V = arxstruc(Date,Datv,NN)

an ARX model is fitted to the data set Date for each of the structures in NN.
Next, for each of these models, the sum of squared prediction errors is
computed as they are applied to the data set Datv. The resulting loss functions
are stored in V together with the corresponding structures.

Model Structure Selection and Validation

3-71

To select the structure that has the smallest loss function for the validation set
Datv, use

nn = selstruc(V,0)

Such a procedure is known as cross validation and is a good way to approach
the model selection problem.

It is usually a good idea to visually inspect how the fit changes with the number
of estimated parameters. You can get a graph of the fit versus the number of
parameters with

selstruc(V)

This routine prompts you to choose the number of parameters to estimate,
based upon visual inspection of the graph. Then it selects the structure with
the best fit for that number of parameters.

The command struc helps generate typical structure matrices NN for
single-input systems. A typical sequence of commands is

V = arxstruc(Date,Datv,struc(2,2,1:10));
nn = selstruc(V,0);
nk = nn(3);
V = arxstruc(Date,Datv,struc(1:5,1:5,nk-1:nk+1));
selstruc(V)

where you first establish a suitable value of the delay nk by testing
second-order models with delays between 1 and 10. The best fit selects the
delay, and then all combinations of ARX models with up to five a and b
parameters are tested with delays around the chosen value (a total of 75
models).

If the model is validated on the same data set from which it was estimated, that
is, if Date = Datv, the fit always improves as the flexibility of the model
structure increases. You need to compensate for this automatic decrease of the
loss functions. There are several approaches for this. Probably the best known
technique is Akaike’s Final Prediction Error (FPE) criterion and his closely
related Information Theoretic Criterion (AIC). Both simulate the
cross-validation situation, where the model is tested on another data set.

3 Tutorial

3-72

The FPE is formed as

where d is the total number of estimated parameters and N is the length of the
data record. V is the loss function (quadratic fit) for the structure in question.
The AIC is formed as

(See Section 16.4 in Ljung (1999).)

According to Akaike’s theory, in a collection of different models, choose the one
with the smallest FPE (or AIC). You can display the FPE values with the model
parameters by typing just the model name. It is also one of the fields in
EstimationInfo, and you can access it using

FPE = fpe(m)

Similarly, the AIC value of an estimated model is obtained as

AIC = aic(m)

If you have used arxstruc to generate many ARX models, you find the
structure that minimizes the AIC by

nn = selstruc(V,'AIC')

where V is the output of arxstruc. A related criterion is Rissanen’s Minimum
Description Length (MDL) approach, which selects the structure that allows
the shortest overall description of the observed data. This is obtained with

nn = selstruc(V,'MDL')

If substantial noise is present, the ARX models might need to be of high order
to describe simultaneously the noise characteristics and the system dynamics.
(For ARX models the disturbance model 1/A(q) is directly coupled to the
dynamics model B(q)/A(q).)

FPE
1 d

N
----+

1 d
N
----–

--------------V=

AIC V 1 2 d
N
----+⎝ ⎠

⎛ ⎞
⎝ ⎠
⎛ ⎞log=

Model Structure Selection and Validation

3-73

Impulse Response to Determine Delays
The command impulse applied to a data set

impulse(Data,'sd',3)

shows a nonparametric estimate of the impulse response. In the call above, a
confidence region around zero is also shown, corresponding to three standard
deviations (ca. 99.9%). Any part of the impulse response that is outside this
region is thus significant. The first sample after t = 0, at which the impulse
response estimate crosses the confidence band, is thus a good estimate of the
delay in the channel in question.

Significant impulse response estimates for negative time lags are indications
of feedback in the data.

Checking Pole-Zero Cancellations
A near pole-zero cancellation in the dynamics model is an indication that the
model order might be too high. To judge whether a near cancellation is a real
cancellation, take the uncertainties in the pole and zero locations into
consideration

pzmap(mod,'sd',1)

where the 1 indicates how many standard deviations wide the confidence
interval is. If the confidence regions of a zero and a pole overlap, try lower
model orders.

This check is especially useful when the models have been generated by arx.
As mentioned previously, the orders can be pushed up because of the
requirement that c/A(q) describe the disturbance characteristics. Checking
cancellations in B(q)/A(q) then gives a good indication of which orders to
choose from model structures like armax, oe, and bj.

Residual Analysis
The residuals associated with the data and a given model, as in
(Equation 3-38), are ideally white and independent of the input for the model
to correctly describe the system. The function

resid(Model,Data)

computes the residuals (prediction errors) e from the model when applied to
Data, and performs whiteness and independence analyses. The autocorrelation

3 Tutorial

3-74

function of e and the cross-correlation function between e and u are computed
and displayed for up to lag 25. Also displayed are 99% confidence intervals for
these variables, assuming that e is indeed white and independent of u.

The rule is that if the correlation functions go significantly outside these
confidence intervals, do not accept the corresponding model as a good
description of the system. Some qualifications of this statement are necessary:

• Model structures like the OE structure (Equation 3-17) and methods like the
IV method (Equation 3-41) focus on the dynamics G and less about the
disturbance properties H. If you are interested primarily in G, focus on the
independence of e and u rather than the whiteness of e.

• Correlation between e and u for negative lags, or current affecting
future , is an indication of output feedback. This is not a reason to reject
the model. Correlation at negative lags is of interest, because certain
methods do not work well when feedback is present in the input-output data
(see “Feedback in Data” on page 3-83), but concentrate on the positive lags
in the cross-correlation plot for model validation purposes.

• When you are using the ARX model (Equation 3-14), the least squares
procedure automatically makes the correlation between and
zero for , , , for the data used for the estimation.

The residuals e together with the input u are returned by

E = resid(Model,Data)

as an iddata object. As part of the validation process, you can graph the
residuals using

 plot(E)

for a simple visual inspection of irregularities and outliers. (See also “Outliers
and Bad Data; Multiple-Experiment Data” on page 3-81.)

Model Error Models
The residual call

E = resid(Model,Data)

returns the iddata object e, which has the inputs in Data as inputs and the
prediction errors (residuals) as outputs. Building models using e will thus
reveal whether there is any significant influence from u to e left in the data.

e t()
u t()

e t() u t k–()
k nk= nk 1+ …nk nb 1–+

Model Structure Selection and Validation

3-75

Such models are called model error models, and examining them is a good
complement to traditional residual analysis.

E= resid(Model,Data)
impulse(E,'sd',3) % An alternative to residual analysis
bode(spa(E),'sd',3) % Shows the frequency ranges

% with significant model errors
m = arx(E,[0 10 0])
bode(m,'sd',3)

Note that the resid command has several options to display model error
properties rather than correlation functions.

Noise-Free Simulations
To check whether a model is capable of reproducing the observed output when
driven by the actual input, you can run a simulation.

u = Data(:,[],:) % Extracting the input from the data
yh = sim(Model,u)
y = Data(:,:,[]) % Extracting the output from the data
plot(y,yh)

The same result is obtained by

compare(Data,Model)

It is a much tougher and more revealing test to perform this simulation, as well
as the residual tests, on a fresh data set Data that was not used for the
estimation of the model Model. This is called cross validation.

Assessing the Model Uncertainty
The estimated model is always uncertain, due to disturbances in the observed
data and the lack of an absolutely correct model structure. The variability of
the model that is due to the random disturbances in the output is estimated by
most of the estimation procedures, and it can be displayed and illuminated in
a number of ways. This variability answers the question of how different can
the model be if the identification procedure is repeated, using the same model
structure, but with a different data set that uses the same input sequence. It
does not account for systematic errors due to an inadequate choice of model
structure. There is no guarantee that the true system lies in the confidence
interval. The rule is that the model should pass a residual analysis (see

3 Tutorial

3-76

“Residual Analysis” on page 3-73) test (correlation functions essentially inside
the confidence lines) for the uncertainty bounds to be regarded as reliable.

The uncertainty in the different model views is displayed if the argument 'sd'
is included in the argument list,

command(Model,'sd',sd)

as explained in “Graphs of Model Properties” on page 3-64.

The uncertainty in the time response is displayed by

simsd(Model,u)

Ten possible models are drawn from the asymptotic distribution of the model
Model. The response of each of them to the input u is graphed on the same
diagram.

The uncertainty of these responses concerns the external input-output
properties of the model. It reflects the effects of inadequate excitation and the
presence of disturbances.

You can also directly get the standard deviation of the simulated result by

[ysim,ysimsd] = sim(Model,u)

The uncertainty in internal representations is manifested in the covariance
matrix of the estimated parameters

Model.CovarianceMatrix

which is used to give the standard deviations of all model characteristics. The
parametric uncertainty is directly available as

Model.da

for the standard deviations of Model.a.

Note that state-space models, estimated in a free parameterization, do not
have well-defined standard deviations of the matrix elements. The model still
has stored the uncertainty of the input-output behavior, so other model
representations and graphs will show the uncertainty. For a state-space model
in a free parameterization, it is possible to first transform it to a canonical
parameterization and then display the matrix parameter uncertainties:

Model = pem(Data,5)
Modelc = Model

Model Structure Selection and Validation

3-77

Modelc.ss = 'canon'
Modelc.da

All routines for computing and displaying model characteristics can also
calculate and show the uncertainties. See “Transformations to Other Model
Representations” on page 3-67.

Large uncertainties in these representations are caused by excessively high
model orders, inadequate excitation, or bad signal-to-noise ratios.

Comparing Different Models
It is a good idea to display the model properties in terms of quantities that have
more physical meaning than the parameters themselves. Bode plots, pole-zero
plots, and model simulations all give a sense of the properties of the system
that have been picked up by the model.

If several models of different characters give very similar Bode plots in the
frequency range of interest, you can be fairly confident that these must reflect
features of the true, unknown system. You can then choose the simplest model
among these.

A typical identification session includes estimation in several different
structures, and comparisons of the model properties. Here is an example.

a1 = arx(Data,[1 2 1]);
g = spa(Data);
bode(g,a1)
bode(g('n'),a1('n'))% the output disturbance spectra
am2 = armax(Data,[2 2 2 1]);
bode(g,am2)
pzmap(a1,am2,'sd',3)

Selecting Model Structures for Multivariable
Systems
A multivariable (MIMO) system is a system with several input and output
channels. All model structures in the toolbox support models with one output
and several inputs. Polynomial models, idpoly, do not handle multioutput
models, however.

3 Tutorial

3-78

Model Structures
Multivariable systems offer a potentially richer internal structure. The easiest
approach, in the black-box situation, is to think just in terms of input delays
and state-space model order.

A recommended approach is to get an idea of input delays from the
nonparametric impulse response estimate and determine the vector nk =
[nk1,nk2,...,nkm] where nkj is the minimal delay from input j to any of the
output channels. Then try state-space models with several orders and with
these delays.

impulse(Data,'sd',3)
Model = n4sid(Data(1:500),'nx',1:10,'nk',nk)
compare(Data(501:1000),Model)

The compare plot will reveal which output channels are easy and which are
difficult to reproduce.

An alternative to find the delays is to first estimate a parametric model with
delays 1, and then examine the impulse responses of this model and determine
the delays.

Model = pem(Data) % This uses 'best' model order.
impulse(Model,'sd',3)
Model = pem(Data,'nx',1:10,'nk',nk)

To test models with delay 0 in a similar way, use

Model = pem(Data,'best','nk',zeros(size(nk)))

Significant responses at delay 0 must be examined with care, because they
might be caused by feedback.

Note that delays nk larger than 1 are incorporated in the model structure, and
thus increase the state-space model order from the nominal one with
sum(max(nk-1,zeros(size(nk)))). An alternative is to use the property
'InputDelay'. This leads to a model that has the same delays as for 'nk'.
These are not explicitly shown in the model matrices, but stored as a property
to be used when necessary. See “nk and InputDelay” on page 3-104. See also
the properties of idss on the reference page.

If you have detailed knowledge about which orders and delays are reasonable
in the different input/output channels, you can use multivariable ARX models

Model Structure Selection and Validation

3-79

in the idarx model format. This allows you to define the orders of the input and
output lags, as well as the delays, independently for the different channels.

Black-box parameterizations of multivariable systems require many
parameters. Therefore, it might be important to incorporate any essential
structure knowledge based on physical insight. You typically do this with
continuous-time, custom model parameterizations using structured idss or
idgrey models. See “Structured State-Space Models with Free Parameters: the
idss Model” on page 3-48 and “State-Space Models with Coupled Parameters:
the idgrey Model” on page 3-51.

Channel Selection
A particular aspect of multivariable models is the selection of channels. Models
for subselections of input-output channels can be quite useful and informative.
Generally speaking the models become better when more input channels are
used, and worse when more output channels are used. The latter observation
is due to the fact that such models have more to explain.

If you build models with several outputs and find, using compare, a certain
output channel to be difficult to reproduce, then try to build a model of this
channel alone. This will reveal if there are inherent difficulties with this
output, or if it is just too difficult to handle it together with other outputs.

Analogously, if you see that using, for example, step or impulse, a certain
input channel seems to have an insignificant influence on the outputs, then
remove that channel, and examine whether the corresponding model becomes
any worse, for example, in the compare plots.

The toolbox’s data and model objects give full support for the bookkeeping
required for these channel subselections. You select channels by direct
subreferencing, and the InputName and OutputName properties form the basis
for a correct combination of channels. The subreferencing follows:

Data(Samples,Outputs,Inputs)
Model(Outputs,Inputs)

3 Tutorial

3-80

Typical command sequences can be

Date = Data(1:500)
Datv = Data(501:1000)
m = pem(Date)
compare(Datv,m)
m1 = pem(Date(:,3,4))
compare(Datv,m,m1)
bode(m,m1)
compare(Datv,m(:,4),m1)

Dealing with Data

3-81

Dealing with Data
Extracting information from data is not an entirely straightforward task. In
addition to the decisions required for model structure selection and validation,
the data might need to be handled carefully. This section gives some advice on
handling several common situations.

Offset Levels
When the data has been collected from a physical plant, it is typically
measured in physical units. The levels in these raw input and output
measurements might not match in any consistent way. This will force the
models to waste some parameters correcting the levels.

Typically, linearized models are sought around some physical equilibrium. In
such cases offsets are easily dealt with: subtract the mean levels from the input
and output sequences before the estimation. It is best if the mean levels
correspond to the physical equilibrium, but if such values are not known, use
the sample means.

Data = detrend(Data);

Section 14.1 in Ljung (1999) discusses this in more detail. There are situations
when it is not advisable to remove the sample means. It could be, for example,
that the physical levels are built into the underlying model, or that
integrations in the system must be handled with the right level of the input
being integrated.

With the detrend command, you can also remove piecewise linear trends.

Outliers and Bad Data; Multiple-Experiment Data
Real data are also subject to possible bad disturbances: an unusually large
disturbance, a temporary sensor or transmitter failure, etc. It is important that
such outliers are not allowed to affect the models too strongly.

The robustification of the error criterion (described under LimitError in
Algorithm Properties on page 4-22) helps here, but it is always good practice
to examine the residuals for unusually large values, and to go back and
critically evaluate the original data responsible for the large values. If the raw
data is obviously in error, it can be smoothed and the estimation procedure
repeated.

3 Tutorial

3-82

Often the data has portions with bad behavior. This can, for example, be due to
big disturbances or sensor failures over a period of time. It can also be that
there are time periods where nothing happens, the input is not exciting, etc.
Then the best alternative is to break up the data into pieces of informative
portions. By merging the pieces into a multiple-experiment iddata object, they
can still be used together to build models. Another situation when
multiple-experiment data is useful is when several different experiments have
been performed on the same plant. The estimation routines take proper action
to handle the different pieces. All estimation, simulation, and validation
routines in the toolbox handle multiple-experiment data in a transparent
fashion. A typical string of commands could be

plot(Data)
Datam = merge(Data(1:340),Data(500:897), ...

Data(1001:1200),Data(1550:2000))
m =pem(getexp(Datam,[1,2,4])) % Portions 1, 2, and 4 for
estimation
compare(getexp(Datam,3),m) % Portion 3 for validation

Missing Data
In practice it is often the case that certain measurement samples are missing.
The reason might be sensor failures or data acquisition failures. It might be
that the data are directly reported as missing, or that plots reveal that some
values are obviously in error. This can apply both to inputs and outputs. In
these cases, replace the missing data by NaNs when forming the signal matrices
and the iddata object. The routine misdata can then be applied to reconstruct
the missing data in a reasonable way.

dat = iddata(y,u,0.2) % y and/or u contain NaNs for missing data.
dat1 = misdata(dat);
plot(dat,dat1) % Checking how the missing data

% has been estimated in dat1
m = pem(dat1) % Model estimated using reconstructed missing data

See Section 14.2 in Ljung (1999) for a discussion on missing data.

Filtering Data: Focus
Depending upon the application, interest in the model can be focused on
specific frequency bands. Filtering the data before the estimation, through
filters that enhance these bands, improves the fit in the interesting regions.

Dealing with Data

3-83

This is accomplished in the System Identification Toolbox by the property
'Focus'. For example, to enhance the fit in the frequency band between 0.05
and 1 rad/s, execute one of the following:

m = pem(Data,3,'Foc',[0.05 1])

ma = arx(Data,[2 3 1],'Foc',[0.05 1])

For time-domain data, this computes and uses a fifth-order Butterworth
bandpass filter with passband between the indicated frequencies. For
frequency-domain data, this selects the frequencies in the passband. The data
is filtered through the filter before fitting the transfer function from the
measured inputs (G in (Equation 3-58)) to the outputs. The disturbance model
(H) is, however, estimated using the unfiltered data. Chapter 14 in Ljung
(1999) discusses the role of filtering in more detail.

For several passbands, use a matrix with two columns as focus, where each row
defines a passband.

For a model that does not use a disturbance description (that is, H = 1 in
(Equation 3-58), which corresponds to K = 0 for state-space, and
na = nc = nd = 0 for polynomial models), the Focus effect is the same as
applying the routine to filtered data. That is,

m = pem(Data,3,'Foc',[0.05 1],'dist','none')
Df = idfilt(Data,[0.05 1]);
m = pem(Df,3,'dist','none')

give the same model.

The System Identification Toolbox contains other useful commands for related
problems. For example, if you want to lower the sampling rate by a factor of 5,
use

Dat5 = resample(Data,1,5);

Feedback in Data
If the system was operating in closed loop (feedback from the past outputs to
the current input) when the data was collected, you must exercise some care.

Basically, all the prediction error methods work equally well for closed-loop
data. Note, however, that the output-error model (Equation 3-17) and the
Box-Jenkins model (Equation 3-18) are normally capable of giving a correct
description of the dynamics G, even if H (which equals 1 for the output-error

3 Tutorial

3-84

model) does not allow a correct description of the disturbance properties. This
is not true for closed-loop data, so you need to model the disturbance properties
more carefully. Another thing to be cautious about is that impulse response
effects at delay 0 very well could be traced to the feedback mechanism and not
to the system itself.

The spectral analysis method and the instrumental variable techniques (with
default instruments) as well as n4sid can give unreliable results when applied
to closed-loop data. Avoid these techniques when feedback is present.

To detect whether feedback is present, use the basic method of applying
impulse to estimate the impulse response. Significant values of the impulse
response at negative lags are a clear indication of feedback. There is also a
command, feedback, that can be applied to the data for direct tests.

When a parametric model has been estimated and the resid command is
applied, a graph of the correlation between residuals and inputs is given.
Significant correlation at negative lags again indicates output feedback in the
generation of the input. Testing for feedback is, therefore, a natural part of
model validation.

The advice function applied both to data and to estimated models will also
indicate possible feedback effects in the data. See the reference page for
feedback.

Delays
The selection of the delay nk in the model structure is a very important step in
obtaining good identification results. You can get an idea about the delays in
the system by the impulse response estimate from impulse.

Incorrect delays are also visible in parametric models. Underestimated delays
(nk too small) show up as small values of leading estimates compared to
their standard deviations. Overestimated delays (nk too large) are usually
visible as a significant correlation between the residuals and the input at the
lags corresponding to the missing terms in the resid plot.

A good procedure is to start by using arxstruc to test all feasible delays
together with a second-order model. Use the delay that gives the best fit for
further modeling. When you have found an otherwise satisfactory structure,
vary nk around the nominal value within the structure and evaluate the
results.

bk

bk

Dealing with Data

3-85

The command delayest directly estimates the delay, based on the arxstruc
command.

3 Tutorial

3-86

Recursive Parameter Estimation
In many cases it might be necessary to estimate a model online at the same
time as the input-output data is received. You might need the model to make
some decision online, as in adaptive control, adaptive filtering, or adaptive
prediction. It might be necessary to investigate possible time variation in the
system’s (or signal’s) properties during the collection of data. Terms like
recursive identification, adaptive parameter estimation, sequential estimation,
and online algorithms are used for such algorithms. Chapter 11 in Ljung (1999)
deals with such algorithms in some detail.

Basic Algorithm
A typical recursive identification algorithm is

(3-60)

Here is the parameter estimate at time t, and is the observed output
at time t. Moreover, is a prediction of the value based on observations
up to time and also based on the current model (and possibly also earlier
ones) at time . The gain determines in what way the current
prediction error affects the update of the parameter estimate. It is
typically chosen as

(3-61)

where is (an approximation of) the gradient with respect to of .
The latter symbol is the prediction of according to the model described by

. Note that model structures like AR and ARX that correspond to linear
regressions can be written as

(3-62)

where the regression vector contains old values of observed inputs and
outputs, and represents the true description of the system. Moreover,

 is the noise source (the innovations). Compare with (Equation 3-14). The

natural prediction is , and its gradient with respect to
becomes exactly .

θ̂ t() θ̂ t 1–() K t() y t() ŷ t()–()+=

θ̂ t() y t()
ŷ t() y t()

t 1–
t 1– K t()

y t() ŷ t()–

K t() Q t()ψ t()=

ψ t() θ ŷ t θ()
y t()

θ

y t() ψT t()θ0 t() e t()+=

ψ t()
θ0 t()

e t()

ŷ t() ψT t()θ̂ t 1–()= θ
ψ t()

Recursive Parameter Estimation

3-87

For models that cannot be written as linear regressions, you cannot recursively
compute the exact prediction and its gradient for the current estimate .
Then you must use approximations and instead. Section 11.4 in
Ljung (1999) describes suitable ways of computing such approximations for
general model structures.

The matrix , which affects both the adaptation gain and the direction in
which the updates are made, can be chosen in several different ways. This is
discussed in the following.

Choosing an Adaptation Mechanism and Gain
The most logical approach to the adaptation problem is to assume a certain
model for how the true parameters change. A typical choice is to describe
these parameters as a random walk.

(3-63)

Here is assumed to be white Gaussian noise with covariance matrix

(3-64)

Suppose that the underlying description of the observations is a linear
regression (Equation 3-62). An optimal choice of in (Equation 3-60) and
(Equation 3-61) can then be computed from the Kalman filter, and the
complete algorithm becomes

(3-65)

Here is the variance of the innovations in (Equation 3-62):

 (a scalar). The algorithm (Equation 3-65) is called the Kalman

θ̂ t 1–()
ŷ t() ψ t()

Q t()

θ0

θ0 t() θ0 t 1–() w t()+=

w t()

Ew t()wT t() R1=

Q t()

θ̂ t() θ̂ t 1–() K t() y t() ŷ t()–()+=

ŷ t() ψT t()θ̂ t 1–()=
K t() Q t()ψ t()=

Q t() P t 1–()

R2 ψ t()TP t 1–()ψ t()+
---=

P t() P t 1–() R1
P t 1–()ψ t()ψ t()TP t 1–()

R2 ψ t()TP t 1–()ψ t()+
--–+=

R2 e t()

R2 Ee2 t()=

3 Tutorial

3-88

filter (KF) approach to adaptation, with drift matrix . See Equations (11.66)

and (11.67) in Ljung (1999). The algorithm is entirely specified
by , , , , and the sequence of data , , , 2. Even

though the algorithm is appropriate for a linear regression model structure, it
can also be applied in the general case where is computed in a different
way from (Equation 3-65b).

Another approach is to discount old measurements exponentially, so that an
observation that is samples old carries a weight that is of the weight of
the most recent observation. This means that the following function is
minimized rather than (Equation 3-39) at time t:

(3-66)

Here is a positive number (slightly) less than 1. The measurements that are
older than carry a weight in the expression above that is less
than about 0.3. Think of as the memory horizon of the approach.
Typical values of are in the range 0.97 to 0.995.

The criterion (Equation 3-66) can be minimized exactly in the linear regression
case giving the algorithm (Equation 3-65abc) with the following choice of :

(3-67)

This algorithm is called the forgetting factor (FF) approach to adaptation, with
the forgetting factor . See Equation (11.63) in Ljung (1999). The algorithm is
also known as recursive least squares (RLS) in the linear regression case. Note
that in this approach gives the same algorithm as in
the Kalman filter approach.

A third approach is to allow the matrix to be a multiple of the identity
matrix.

(3-68)

R1

R1 R2 P 0() θ 0() y t() ψ t() t 1=

ŷ t()

τ λτ

λt k– e2 k()

k 1=

t

∑

λ
τ 1 1 λ–()⁄=

τ 1 1 λ–()⁄=
λ

Q t()

Q t() P t() P t 1–()

λ ψ t()TP t 1–()ψ t()+
---= =

P t() 1
λ
--- P t 1–() P t 1–()ψ t()ψ t()TP t 1–()

λ ψ t()TP t 1–()ψ t()+
--–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

λ

λ 1= R1 0 R2, 1= =

Q t()

Q t() γI=

Recursive Parameter Estimation

3-89

It can also be normalized with respect to the size of .

(3-69)

See Equations (11.45) and (11.46), respectively, in Ljung (1999). These choices

of move the updates of in (Equation 3-60) in the negative gradient
direction (with respect to) of the criterion (Equation 3-39). Therefore,
(Equation 3-68) is called the unnormalized gradient (UG) approach and
(Equation 3-69) the normalized gradient (NG) approach to adaptation, with
gain . The gradient methods are also known as least mean squares (LMS) in
the linear regression case.

Available Algorithms
The System Identification Toolbox provides the following functions that
implement all common recursive identification algorithms for model structures
in the family (Equation 3-43): rarmax, rarx, rbj, rpem, rplr, and roe. They all
share the following basic syntax:

[thm,yh] = rfcn(z,nn,adm,adg)

Here z contains the output-input data as usual. nn specifies the model
structure, exactly as for the corresponding offline algorithm. The arguments
adm and adg select the adaptation mechanism and adaptation gain listed above.

 adm = 'ff'; adg = lam

gives the forgetting factor algorithm (Equation 3-67), with forgetting factor
lam.

adm = 'ug'; adg = gam

gives the unnormalized gradient approach (Equation 3-68) with gain gam.
Similarly,

adm = 'ng'; adg = gam

gives the normalized gradient approach (Equation 3-69). To obtain the Kalman
filter approach (Equation 3-65) with drift matrix R1, enter

adm = 'kf'; adg = R1

ψ

Q t() γ

ψ t() 2
-----------------I=

Q t() θ̂
θ

γ

3 Tutorial

3-90

The value of is always 1. Note that the estimates in (Equation 3-65) are
not affected if all the matrices and are scaled by the same number.
Therefore you can always scale the original problem so that becomes 1.

The output argument thm is a matrix that contains the current models at the
different samples. Row k of thm contains the model parameters, in alphabetical
order at sample time k, corresponding to row k in the data matrix z. The
ordering of the parameters is the same as m.par would give when applied to a
corresponding offline model.

The output argument yh is a column vector that contains, in row k, the
predicted value of , based on past observations and current model. The
vector yh thus contains the adaptive predictions of the outputs, and is useful
also for noise canceling and other adaptive filtering applications.

The functions also have optional input arguments that allow the specification
of , and . Optional output arguments include the last value of
the matrix P and of the vector .

Now, rarx is a recursive variant of arx; similarly rarmax is the recursive
counterpart of armax, and so on. Note, however, that rarx does not handle
multioutput systems, and rpem does not handle state-space structures.

The function rplr is a variant of rpem, and uses a different approximation of
the gradient . It is known as the recursive pseudolinear regression approach,
and contains some well-known special cases. See Equation (11.57) in Ljung
(1999). When applied to the output-error model (nn=[0 nb 0 0 nf nk]) it
results in methods known as HARF ('ff'-case) and SHARF ('ng'-case). The
common extended least squares (ELS) method is an rplr algorithm for the
ARMAX model (nn=[na nb nc 0 0 nk]).

The following example shows a second-order output-error model, which is built
recursively, and its time-varying parameter estimates plotted as functions of
time.

thm = roe(z,[2 2 1],'ff',0.98);
plot(thm)

The next example shows how a second-order ARMAX model is recursively
estimated by the ELS method, using Kalman filter adaptation. The resulting
static gains of the estimated models are then plotted as a function of time.

[N,dum]=size(z);
thm = rplr(z,[2 2 2 0 0 1],'kf',0.01∗eye(6));

R2 θ̂
R1 R2, P 0()

R2

y k()

θ 0() P 0(), ψ 0()
ψ

ψ

Recursive Parameter Estimation

3-91

nums = sum(thm(:,3:4)')';
dens = ones(N,1)+sum(thm(:,1:2)')';
stg = nums./dens;
plot(stg)

So far, the examples of applications where a batch of data is examined cover
studies of the variability of the system. The algorithms are, however, also
appropriate for true online applications, where the computed model is used for
some online decision. You do this by storing the update information in

 and information about past data in (and) and
using that information as initial data for the next time step. The following
example shows the recursive least squares algorithm being used online (just to
plot one current parameter estimate).

% Initialization, first i/o pair y,u (scalars)
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98);
axis([1 50 -2 2])
plot(1,th(1),'∗'),hold
%The online loop:
for k = 2:50
% At time k receive y,u
[th,yh,P,phi] = rarx([y u],[2 2 1],'ff',0.98,th',P,phi);
plot(k,th(1),'∗')
end

Execute iddemo #10 to illustrate the recursive algorithms.

Segmentation of Data
Sometimes the system or signal exhibits abrupt changes during the time when
the data is collected. It might be important in certain applications to find the
time instants when the changes occur and to develop models for the different
segments during which the system does not change. This is the segmentation
problem. Fault detection in systems and detection of trend breaks in time
series can serve as two examples of typical problems.

The System Identification Toolbox offers the function segment to deal with the
segmentation problem. The basic syntax is

thm = segment(z,nn)

θ̂ t 1–() P t 1–(), φ t 1–() ψ t 1–()

3 Tutorial

3-92

with a format like rarx or rarmax. The matrix thm contains the piecewise
constant models in the same format as for the algorithms described earlier in
this section.

The algorithm that is implemented in segment is based on a model description
like (Equation 3-63), where the change term is zero most of the time, but
now and then it abruptly changes the system parameters . Several
Kalman filters that estimate these parameters are run in parallel, each of them
corresponding to a particular assumption about when the system actually
changed. The relative reliability of these assumed system behaviors is
constantly judged, and unlikely hypotheses are replaced by new ones. Optional
arguments allow the specification of the measurement noise variance in
(Equation 3-62), the probability of a jump, the number of parallel models in
use, and also the guaranteed lifespan of each hypothesis. See the segment
reference page.

w t()
θ0 t()

R2

Miscellaneous Topics

3-93

Miscellaneous Topics
This section describes a number of miscellaneous topics. Most of the
information here is also covered in other parts of the manual, but since
manuals seldom are read from the beginning, you can also check whether a
particular topic is brought up here.

• “Time-Series Modeling” on page 3-93

• “Periodic Inputs” on page 3-96

• “Connections Between the Control System Toolbox and the System
Identification Toolbox” on page 3-96

• “Memory/Speed Tradeoffs” on page 3-98

• “Local Minima” on page 3-98

• “Initial Parameter Values” on page 3-99

• “Initial State” on page 3-100

• “Initial States for Frequency Domain Data” on page 3-101

• “Using Simulation to Validate Estimated Models” on page 3-101

• “The Estimated Parameter Covariance Matrix” on page 3-103

• “No Covariance” on page 3-104

• “nk and InputDelay” on page 3-104

• “Linear Regression Models” on page 3-106

• “Spectrum Normalization and the Sampling Interval” on page 3-107

• “Interpretation of the Loss Function” on page 3-109

• “Enumeration of Estimated Parameters” on page 3-110

• “Complex-Valued Data” on page 3-111

• “Strange Results” on page 3-111

Time-Series Modeling
When there is no input present, the general model (Equation 3-43) reduces to
the ARMA model structure.

With you have an AR model structure.

Similarly, a state-space model for a time series is given by

A q()y t() C q()e t()=

C q() 1=

3 Tutorial

3-94

so that the matrices B and D are empty.

Basically all commands still apply to these time-series models, but with
natural modifications. They are listed as follows:

m= idpoly(A,[],C)
e = iddata([],idinput(300,'rgs'))
y = sim(m,e)

If a time series s is given as a vector or a matrix, it is put into the iddata format
by

y = iddata(s,[],Ts);

Spectral analysis (etfe and spa) returns results in the idfrd model format,
which now just contains SpectrumData and its variance. bode will only plot
these signal spectra and, if required, the confidence intervals.

g = spa(y)
p= etfe(y)
bode(g,p,'sd',3)

Note that etfe gives the periodogram estimate p of the spectrum.

armax and arx work the same way, but need no specification of nb and nk.

th = arx(y,na)
th = armax(y,[na nc])

Note that arx also handles multivariable signals, and so do n4sid and pem.

m = n4sid(y) % default order
bode(m)
compare(y,m,10) % 10-step ahead predictions being evaluated.

You can build structured state-space models of time series simply by specifying
B = [], D = [] in idss and idgrey. resid works the same way for time-series
models, but does not provide any input-residual correlation plots.

resid(m,y)

In addition there are two commands that are specifically constructed for
building scalar AR models of time series. One is

x t 1+() Ax t() Ke t()+=
y t() Cx t() e t()+=

Miscellaneous Topics

3-95

m = ar(y,na)

which has an option that allows you to choose the algorithm from a group of
several popular techniques for computing the least squares AR model. Among
these are Burg’s method, a geometric lattice method, the Yule-Walker
approach, and a modified covariance method. See Chapter 4, “Function
Reference,” for details. The other command is

m = ivar(y,na)

which uses an instrumental variables technique to compute the AR part of a
time series.

Finally, when no input is present, the functions bj, iv, iv4, and oe are not of
interest.

Here is an example where you can simulate a time series, compare spectral
estimates and covariance function estimates, and also the predictions of the
model.

ts0 = idpoly([1 -1.5 0.7],[]);
ir = sim(ts0,[1;zeros(24,1)]);
Ry0 = conv(ir,ir(25:-1:1)); % The true covariance function
e = idinput(200,'rgs');
y = sim(ts0,e); % y is a vector here
y = iddata(y) % iddata object with sampling time 1.
plot(y)
per = etfe(y);
speh = spa(y);
ffplot(per,speh,ts0)
ts2 = ar(y,2); % A second-order AR model:
ffplot(speh,ts2,ts0,'sd',3)
% The covariance function estimates:
Ryh = covf(y,25);
Ryh = [Ryh(end:-1:2),Ryh]';
ir2 = sim(ts2,[1;zeros(24,1)]);
Ry2 = conv(ir2,ir2(25:-1:1));
plot([-24:24]'∗ones(1,3),[Ryh,Ry2,Ry0])
% The prediction ability of the model:
compare(y,ts2,5)

3 Tutorial

3-96

Periodic Inputs
It is often an advantage to use a periodic input for identification whenever
possible. See Section 13.3 in Ljung (1999). If you import or create a periodic
input, as in

u = idinput([300 2 5]) % Period 300, 2 inputs, 5 periods

you should set the corresponding period in the iddata object.

u = iddata([],u,'Period',[300; 300]);

Normally, an even number of periods should be represented in the data. That
allows the estimation routines to do the right things. For example, when called
with data with periodic inputs, etfe honors the period and computes the
frequency response on a suitably chosen frequency grid. Try this:

m0 =idpoly([1 -1.5 0.7],[0 1 0.5]);
u = idinput([10 1 150],'rbs');
u = iddata([],u,'Period',10);
e = iddata([],randn(1500,1));
y = sim(m0, [u e])
g = etfe([y u])
bode(g,'x',m0) % Good fit at the 5 excited frequencies

Connections Between the Control System Toolbox
and the System Identification Toolbox
The objects and functions of the Control System Toolbox are quite similar to
those of the System Identification Toolbox. This means that the two toolboxes
can be run together efficiently.

Function Calls
The function calls are the same for many essential functions. bode, freqresp,
impulse, minreal, nyquist, ssdata, step, tfdata, zpkdata, etc., all do the
same things with essentially the same syntax. The System Identification
Toolbox commands, however, also handle model uncertainty. The System
Identification Toolbox commands are used whenever at least one of the objects
in the argument list is an idmodel or idfrd object.

Subreferencing of channels and concatenations also follow the same syntax.

Miscellaneous Topics

3-97

Moreover, most of the LTI commands for model manipulation, like append,
augstate, balreal, canon, feedback, G1+G2, G1*G2, etc., will work (using the
Control System Toolbox) in the expected way, returning idmodel objects.
However, in most cases covariance information is lost.

Object Relations
Because the System Identification Toolbox can be run without the Control
System Toolbox, there are no formal parent/child relations between the objects
in the two toolboxes. There are, however, easy transformations between them.
The command that creates idmodel, idss, and idpoly will accept any LTI
object, zpk, tf, or ss. idfrd can similarly be created from frd objects. If the LTI
object has an InputGroup named 'noise' these inputs will be treated as
normalized white noise when you are creating the idmodel object with correct
disturbance model information.

Analogously, ss, zpk, tf, and frd accept any idmodel or idfrd (in the case of
frd) object. The covariance information is then not stored in the LTI objects,
but all disturbance information is translated to a group of extra input channels
with the group name 'noise'. If these are interpreted as normalized white
noise, the LTI objects have the same disturbance properties as the original
imdmodel object.

These simple relations also mean that it is easy to use any LTI command in the
Control System Toolbox and return to System Identification Toolbox objects.

Mb = idss(balreal(ss(M)))

Plot Relations
Although the calls bode, step, etc., have essentially the same syntax, the plots
look different. The System Identification Toolbox commands show confidence
regions when required, and typically show the different input/output channels
as separate plots. The sorting of the channels is based on the InputName and
OutputName properties. Therefore the System Identification Toolbox
commands allow any mix of models, not necessarily of the same sizes.

The System Identification Toolbox plot commands do not offer the same options
and plot interaction facilities as ltiview. However, applying view to one or
several idmodel objects invokes the LTI Viewer.

3 Tutorial

3-98

Here is an example of the interplay between the functions in the two toolboxes.

m0 = drss(4,3,2)
m0 = idss(m0,'NoiseVar',0.1*eye(3))
u = iddata([], idinput([800 2],'rbs'));
e = iddata([], randn(800, 3));
y = sim(m0, [u e])
Data = [y u];
m = pem(Data(1:400))
tf(m)
compare(Data(401:800),m)
view(m)

Memory/Speed Tradeoffs
On machines with no formal memory limitations, it is still of interest to
monitor the sizes of the matrices that are formed. The typical situation is when
an overdetermined set of linear equations is solved for the least squares
solution. The solution time depends, of course, on the dimensions of the
corresponding matrix. The number of rows corresponds to the number of
observed data, while the number of columns corresponds to the number of
estimated parameters. The property MaxSize used with all the relevant
M-files, prevents, whenever possible, the formation of matrices with more than
MaxSize elements. Larger data sets and/or higher-order models are handled by
for loops. for loops give a linear increase in time when the data record is
increased, plus some overhead.

If you regularly work with large data sets and/or high-order models, it is
advisable to tailor the memory and speed tradeoff to your machine by choosing
MaxSize carefully. You could also change the default value of MaxSize in the
M-file idmsize. Then the default value of MaxSize (that is, 'Auto') will be
tailored to your needs. Note that this value is allowed to depend on the number
of rows and columns of the matrices formed.

Local Minima
The iterative search procedures in pem, armax, oe, and bj lead to models
corresponding to a local minimum of the criterion function (Equation 3-39).
Nothing guarantees that this local minimum is also a global minimum. The
startup procedure for black-box models in these routines is, however,
reasonably efficient in giving initial estimates that lead to the global minimum.

Miscellaneous Topics

3-99

If there is an indication that a minimum is not as good as you expected, try
starting the minimization at several different initial conditions, to see if a
smaller value of the loss function can be found. You can use the function init
for that.

Initial Parameter Values
When only orders and delays are specified, the functions armax, bj, oe, and pem
use a startup procedure to produce initial values. The startup procedure goes
through two to four least squares and instrumental variable steps. It is
reasonably efficient in that it usually saves several iterations in the
minimization phase. Sometimes, however, it might pay to use other initial
conditions. For example, you can use an iv4 estimate computed earlier as an
initial condition for estimating an output-error model of the same structure.

m1 = iv4(Data,[na nb nk]);
set(m1,'a',1,'f',m1.a)
m2= oe(Data,m1);

Another example is when you want to try a model with one more delay (for
example, three instead of two) because the leading b-coefficient is quite small.

m1 = armax(Data,[3 3 2 2]);
m1.b(3) = 0
m2 = armax(Data,m1);

If you decrease the number of delays, remember that leading zeros in the
B-polynomial are treated as delays. Suppose you go from three to two delays in
the above example:

m1 = armax(z,[3 3 2 3]);
m1.b(3) = 0.00001;
m2 = armax(Data,m1);

Note that when you construct homemade initial conditions, the conditions
must correspond to a stable predictor (C and F being Hurwitz polynomials),
and they should not contain any exact pole-zero cancellations.

For user-defined structured state-space and multioutput models, you must
provide the initial parameter values (initial model) when defining the
structure in idss or idgrey. The basic approach is to use physical insight to
choose initial values of the parameters with physical significance, and try some

3 Tutorial

3-100

different (randomized) initial values for the others. You can use the routine
init for that.

For free state-space parameterizations, it can sometimes be difficult to reach
the global minimum. If you see that the minimization routine seems to get
stuck (turn trace on and check the improvements per iteration), it might be a
good idea to transform state-space matrices to other realizations, as in

m = pem(Data,5,'trace','on')
m.ss = 'can';
m = pem(Data,m);
m = balreal(m); % If you have the Control System Toolbox
m = pem(Data,m);

Initial State
The filter that computes the prediction errors in (Equation 3-36) needs to be
properly initialized. For input-output (polynomial) models, values of inputs,
outputs, and predictions prior to time t = 0 are required, and state-space
models need the initial state x(0). There are several ways to handle these
unknown states. A simple one is to take all unknown values as zero. If the
model predictor has slow dynamics (that is, the poles of CF or the eigenvalues
of A-KC are close to the unit circle), this could have a very bad effect on the
parameter estimates. It is particularly pronounced for output-error models,
where the noise model cannot be adjusted to handle slow transients from initial
conditions.

The toolbox offers a number of options to deal with the initial state of the
predictor. They are handled by the model property InitialState. The
unknown state can be treated as a vector of unknown parameters
(InitialState = 'Estimate'). They can be set to zero (InitialState =
'Zero') or estimated by a backward prediction method (InitialState =
'Backcast'). They can also be fixed to any user-defined value. The default
value is InitialState = 'Auto', which makes an automatic choice among the
options, guided by the estimation data. For details, see the idss and idpoly
reference pages. Basically, the effect of the initial conditions on the prediction
errors is tested, and if it seems negligible, 'zero' is chosen, which gives a fast
and efficient algorithm. Otherwise the initial state is estimated or backcast.
EstimationInfo will contain information about which method was chosen in
this case.

Miscellaneous Topics

3-101

Proper handling of the initial state is necessary both when models are
estimated and when predictions and simulations are compared. The commands
predict, pe, sim, and compare all offer options for how to deal with this.

Note that the estimated initial condition x(0) depends on both the model and
the estimation data. It is thus a characteristic that does not necessarily have
relevance when the model is applied to another data set.

Initial States for Frequency Domain Data
The calculations using frequency-domain data essentially assume that the
underlying time-domain data is periodic. Otherwise treating convolutions as
multiplications in the frequency domain creates end-effect errors. Therefore
initial conditions are as important for frequency-domain data as for
time-domain data. The proper initial conditions in the frequency domain are
those that make up for deviations in periodicity of the original data.

From a formal point of view, these initial conditions can be handled quite
analogously to the time-domain case. They can be taken as zero, which is the
correct choice if indeed the original data was periodic. They can also be
estimated and backcast. Therefore the values of the property InitialState
can assume the same values, 'zero', 'estimate', 'backcast', and 'auto', as
in the time-domain case. This also applies to the arx command, for which
InitialState has no effect for time-domain data.

Note, again, that the estimated value, x0, is tied to the data set for which it was
estimated. In particular, you should not make any time-domain interpretation
of it in case it was estimated using frequency-domain data.

Using Simulation to Validate Estimated Models
This section describes how to simulate a model in a simulation environment,
such as Simulink, to verify that the simulation results match the experimental
output data from a validation data set.

To simulate an estimated state-space model, you must specify the initial-state
values for the validation data in the simulation. The initial states you specify
for the simulation must correspond to the data set you use in the simulation.

3 Tutorial

3-102

Note The validation data need not differ from the estimation data. If you
choose to use different data for validation in Simulink, you must simulate
with initial states that correspond to this data set.

The X0 model property stores the estimated initial states of the model. This
value corresponds to the data that was used for estimation. If you use a
different data set for validation in Simulink, you cannot use X0 to represent the
model’s initial states during validation.

Tip Alternatively, you can use compare to perform model validation. This
function automatically computes the required initial conditions by default.

When you estimate a model using a data set that consists of multiple
experiments, the initial-states property X0 stores only the estimated states
corresponding to the last experiment. To validate a model using initial states
from an experiment other than the last, use the pe function to estimate X0
again for that specific experiment (see the following example).

Example — Validating an Estimated Model in Simulink
Suppose you estimate the three-state model M using a merged data set Z, which
contains data from 5 experiments — z1, z2, z3, z4, and z5:

Z = merge(z1,z2,z3,z4,z5);
M = n4sid(Z,3);

When a model uses several data sets, the initial-states property stores only the
estimated states corresponding to the last data set. In this example, M.X0 is a
vector of length 3 (corresponding to the three states of the model). The values
of M.X0 are the estimated state values corresponding to z5.

The following procedure describes how to access the initial states of z2 for the
simulation, where z2 is a portion of the estimation data Z.

Miscellaneous Topics

3-103

To specify the settings of the idmodel block in Simulink for comparing the
measured output from experiment z2 with the simulated output:

1 Estimate the initial states using the second experiment as input, that is
Z(z2.u), as follows:

[E,X0est] = pe(M,getexp(Z,2)

Here, the function getexp(Z,2) gets the data in z2.

2 In Simulink, open the Function Block Parameters dialog box for the idmodel
block.

3 In the idmodel variable field, type M to specify the estimated model.

4 In the Initial states... field, type X0est to specify the estimated initial
states.

5 Click OK.

Run the simulation with these settings to compare the measured output z2.y
to the simulated output.

The Estimated Parameter Covariance Matrix
The estimated parameters are uncertain. The amount of uncertainty is
measured and described by the covariance matrix of the estimated parameter
vector (this vector is a random variable, because it depends on the random
noise that has affected the output). This covariance (uncertainty) can also be
estimated from data, as described, for example, in Chapter 9 of Ljung (1999).
The estimated covariance matrix is contained in the estimated model as the
property Model.CovarianceMatrix. It is used to compute all relevant
uncertainty measures of various model input-output properties (Bode plots,
uncertain model output, zeros and poles, etc.).

The estimate of the covariance matrix is based on the assumption that the
model structure is capable of giving a correct description of the system. For
models that contain a disturbance model (H is estimated), it is assumed that
the model will produce white residuals, for the uncertainty estimate to be
correct.

However, for output-error models (H fixed to 1, corresponding to K = 0 for
state-space models and C = D = A = 1 for polynomial models), it is not assumed

3 Tutorial

3-104

that the residuals are white. Instead, their color is estimated, and a correct
estimate of the covariance estimate is used. This corresponds to Equation
(9.42) in Ljung (1999).

No Covariance
Evaluating and visualizing the uncertainty of the estimated models is a very
important aspect of system identification. Handling and translating covariance
information takes a major part of the time in many of the routines of the
System Identification Toolbox. For example, in n4sid, calculating the
Cramer-Rao bound (which in this case is used as an indication of the covariance
properties) takes much longer than estimating the actual model. In d2c and
c2d, most of the time is spent on covariance handling. If you build models that
are of a preliminary nature, and you would like to speed up the calculations,
you can add the property name/property value pair 'Covariance'/'None' to
the list of arguments in most relevant routines. This will prevent covariance
calculations and set a flag not to spend time on this in future use of the model.
You can also set this flag in the model at any time by

Model.cov = 'no'

nk and InputDelay
What’s the difference between the properties nk and InputDelay? InputDelay
is defined for all idmodel and idfrd objects, while nk is defined for idarx and
idpoly as well as for 'Free' and 'Canonical' idss models. Both properties
indicate a delay from the input channels to the outputs. For idarx, nk is a
matrix describing the delays in the different input/output channels, but
otherwise both nk and InputDelay describe the delay from a certain input
channel to all the output channels.

InputDelay is really a flag that tells the model to append the input delays as
time lags when the model is simulated, or as phase lags when the frequency
functions are computed. The InputDelay does not show up when the model is
represented in state-space form, nor as transfer functions, nor in the
input-output polynomials. InputDelay can be used both for continuous- and
discrete-time models. In the latter case, the InputDelay is measured in number
of samples. Moreover, InputDelay can assume negative values in order to
handle noncausal models.

The property nk, on the other hand, is a model structure property, requiring the
model to contain the indicated number of delays whatever the parameter

Miscellaneous Topics

3-105

values. This means that the state-space matrices, the transfer functions, etc.,
will show these delays in an explicit manner. Consequently, nk is not defined
for continuous-time models (other than as a flag for free and canonical
state-space models whether a D matrix is included (nk = 0) or set to zero
(nk = 1)).

Otherwise the two properties can be used in the same way. Note that the actual
delay is the sum of nk and InputDelay. Therefore

m1 = oe(Data,[3 3 0],'InputDelay',3)
m2 = oe(Data,[3 3 1],'InputDelay',2)
m3 = oe(Data,[3 3 3]);
bode(m1,m2,m3)

gives identical bode plots (up to minor variations due to end effects in the data
records). For state-space models, nk is 1 by default. Therefore

m1 = pem(Data,4,'InputDelay',[3 2 4])
m2 = pem(Data,4,'nk',[4 3 5])
bode(m1,m2)
A1 = m1.A
A2 = m2.A

give the same bode plots, while A1 and A2 are different. In fact while A1 is of
size 4-by-4, the matrix A2 is of size 13-by-13, because nine extra states are
required to accommodate the extra 3+2+4 input delays.

For continuous-time data, nk can only be used to flag whether a D matrix
should be included in a state-space model. Any real delays must be handled by
InputDelay. (Note that u is short for input, so you can write udel for
InputDelay.)

Df= fft(Dt)
Df.Ts = 0: % Bandlimited data
m = oe(Df.[1 3],'udel',5); % 5 seconds delay in estimated model

If you build a continuous-time model from discrete-time data, you could use

m = pem(Dt,3,'nk',5,'sspar','can','ts',0)

This will build a preliminary model with a delay of five samples (using n4sid),
which is then converted to continuous time, where the time delays are taken
care of by InputDelay. The pem iterations are then carried out for this
continuous-time model.

3 Tutorial

3-106

Although nk and InputDelay have the same significance for a model, there are
differences in the computational aspects of the estimation process. Generally
speaking, it is faster to estimate a model with a long delay using InputDelay,
rather than nk, because this gives fewer states.

There is a command inpd2nk that translates a model with a nonzero
InputDelay to one where the delay is handled via nk. The commands pe and
predict also offer the possibility to do this transformation when estimating
initial states.

Note that setting nk to a certain value for a given model gives a model structure
that has the indicated delay for any parameter values. The impulse response
of the model might however change (not just be shifted) by this assignment.

Linear Regression Models
A linear regression model is of the type

(3-70)

where and are measured variables and represents noise. Such
models are very useful in most applications. They allow, for example, the
inclusion of nonlinear effects in a simple way. The System Identification
Toolbox function arx allows an arbitrary number of inputs. You can therefore
handle arbitrary linear regression models with arx. For example, if you want
to build a model of the type

(3-71)

let

Data = iddata(y,[ones(size(u)), u, u.^2, u.^3]);
m= arx(Data,'na',0,'nb',[1 1 1 1],'nk',[0 0 0 0])

This is formally a model with one output and four inputs, but all the model
testing in terms of compare, sim, and resid operates in the natural way for the
model (Equation 3-70), once the data set Data is defined as above.

Note that when pem is applied to linear regression structures, by default a
robustified quadratic criterion is used. The search for a minimum of the
criterion function is carried out by iterative search. Normally, you should use
this robustified criterion. If you insist on a quadratic criterion, then set the
argument LimitError in pem to 0. Then pem also converges in one step.

y t() θTϕ t() e t()+=

y t() ϕ t() e t()

y t() b0 b1u t() b2u2 t() b3u3 t()+ + +=

Miscellaneous Topics

3-107

Spectrum Normalization and the Sampling Interval
In the function spa, the spectrum estimate is normalized with the sampling
interval T as

 (3-72)

where

(See also (Equation 3-3).) The normalization in etfe is consistent with
(Equation 3-72). This normalization means that the unit of is “power
per radians/time unit” and that the frequency scale is “radians/time unit.” You
then have

(3-73)

In MATLAB, therefore, you have , where

y.ts = T
sp = spa(y);
phiy = squeeze(sp.spec) % squeeze takes out the spurious
dimensions
S1 = sum(phiy)/length(phiy)/T;
S2 = sum(y.^2)/size(y,1);

Note that phiy contains between and with a
frequency step of ¼ / (T length(phiy)). The sum S1 is, therefore, the
rectangular approximation of the integral in (Equation 3-73). The spectrum
normalization differs from the one used by spectrum in the Signal Processing
Toolbox, and the above example shows the nature of the difference.

The normalization with T (in Equation 3-72) also gives consistent results when
time series are decimated. If the energy above the Nyquist frequency is

Φy ω() T Ry kT()e iωT– WM k()

k M–=

M

∑=

R̂y kT() 1
N
---- y lT kT–()y lT()

l 1=

N

∑=

Φy ω()

Ey2 t() 1
2π
------ Φy ω() ωd

π T⁄–

π T⁄

∫=

S1 S2≈

Φy ω() ω 0= ω π T⁄=
π

3 Tutorial

3-108

removed before decimation (as is done in resample), the spectral estimates
coincide; otherwise you see folding effects.

Try the following sequence of commands.

m0 = idpoly(1,[],[1 1 1 1]);
 % 4th-order MA-process
e = idinput(2000,'rgs')
e = iddata([], e, 'Ts', 1);
y = sim(m0, e);
g1 = spa(y);
g2 = spa(y(1:4:2000)); % This code automatically sets Ts to 4.
ffplot(g1,g2) % Folding effects
g3 = spa(resample(y,1,4)); % Prefilter applied
ffplot(g1,g3) % No folding

For a parametric noise (time-series) model

the spectrum is computed as

(3-74)

which is consistent with (Equation 3-72) and (Equation 3-73). Think of as
the spectral density of the white noise source .

When a parametric disturbance model is transformed between continuous time
and discrete time and/or resampled at another sampling rate, the functions c2d
and d2c in the System Identification Toolbox use formulas that are formally
correct only for piecewise constant inputs. (See (Equation 3-29).) This
approximation is good when T is small compared to the bandwidth of the noise.
During these transformations the variance of the innovations is
changed so that the spectral density T . remains constant. This has two
effects:

• The spectrum scalings are consistent, so that the noise spectrum is
essentially invariant (up to the Nyquist frequency) with respect to
resampling.

• Simulation with noise using sim has a higher noise level when performed at
faster sampling.

y t() H q()e t();= Ee2 t() λ=

Φy ω() λT H eiωT()
2

=

λT
e t()

λ e t()
λ

Miscellaneous Topics

3-109

This latter effect is well in line with the standard description that the
underlying continuous-time model is subject to continuous-time white noise
disturbances (which have infinite, instantaneous variance), and appropriate
lowpass filtering is applied before the measurements are sampled. If this effect
is unwanted in a particular application, scale the noise source appropriately
before applying sim.

Note the following cautions relating to these transformations of disturbance
models. Continuous-time disturbance models must have a white noise
component. Otherwise the underlying state-space model, which is formed and
used in c2d and d2c, is ill-defined. Warnings about this are issued by idpoly
and these functions. Modify the C-polynomial accordingly. Make the degree of
the monic C-polynomial in continuous time equal to the sum of the degrees of
the monic A- and D-polynomials, that is, in continuous time.

length(C)-1 = (length(A)-1)+(length(D)-1)

Interpretation of the Loss Function
The value of the quadratic loss function is given as the field LossFcn in the
EstimationInfo of the model.

m.es.LossFcn

For multioutput systems, this is equal to the determinant of the estimated
covariance matrix of the noise source e.

For most models, you obtain the estimated covariance matrix of the
innovations by forming the corresponding sample mean of the prediction errors
(squared), computed (using pe) from the model with the data for which the
model was estimated.

Note the discrepancy between this value and the values shown during the
minimization procedure (in pem, armax, bj, or oe), because these are the values
of the robustified loss function (see LimitError). Note also that it is the
nonrobustified residuals that are used to estimate the variance of e as stored in
Model.NoiseCovariance. It is also this value that is used to estimate the
covariance matrix of the estimated parameters. Outliers can thus influence the
estimate of NoiseVariance and the covariance matrix, while the parameter
estimates are made robust against them.

Be careful when comparing loss function values between different structures
that use very different disturbance models. An output-error model might have

3 Tutorial

3-110

a better input-output fit even though it displays a higher value of the loss
function than, say, an ARX model.

For ARX models computed using iv4, the covariance matrix of the innovations
is estimated using the provisional disturbance model that is used to form the
optimal instruments. The loss function therefore differs from what would be
obtained if you computed the prediction errors using the model directly from
the data. It is still the best available estimate of the innovations covariance. In
particular, it is difficult to compare the loss function in an ARX model
estimated using arx and one estimated using iv4.

Enumeration of Estimated Parameters
In some cases the parameters of a model are given just as an ordered list. This
is the case for m.ParameterVector and also when online information from the
minimization is displayed with `trace'='full'.

Here the superscript refers to the input number:

• For a state-space structure defined by idss, the parameters in
m.ParameterValues are obtained in the following order. The A matrix is first
scanned row by row for free parameters. Then the B matrix is scanned row
by row, and so on for the C, D, K, and X0 matrices.

• For a state-space matrix that is defined by idgrey, the ordering of the
parameters is the same as in the user-written M-file.

Multivariable ARX models are internally represented in state-space form. The
parameter ordering follows the one described above. The ordering of the
parameters might not be transparent, however, so it is better to use idarx and
arxdata.

Note that the property PName (for parameter name) might be useful to help with
the bookkeeping in these cases, and when you are fixing certain parameters
using FixedParameter. The routine setpname might be helpful in setting
mnemonic parameter names automatically for black-box models.

b1
nu … bnbnu

nu c1 … cnc d1 … dnc, , , , , , , , ,

pars a1 … ana b1
1 … b, nb1

1 b1
2 …bnb2

2 …, , , , , , ,[=

f1
1 …fnf1

1 … f, 1
nu … fnfnu

nu], , , ,

Miscellaneous Topics

3-111

Complex-Valued Data
Some applications of system identification work with complex-valued data, and
thus create complex-valued models. Most of the routines in the System
Identification Toolbox support complex data and models. This is true for the
estimation routines ar, armax, arx, bj, covf, ivar, iv4, oe, pem, spa, and n4sid.
The transformation routines, like freqresp, zpkdata, etc., also work for
complex-valued models, but no pole-zero confidence regions are given. Note
also that the parameter variance-covariance information then refers to the
complex-valued parameters, so no separate information about the accuracy of
the real and imaginary parts will be given. Some display functions like compare
and plot do not work for the complex case. Use sim and plot real and imaginary
parts separately.

Strange Results
Strange results can of course be obtained in any number of ways. We only point
out two cautions: It is tempting in identification applications to call the
residuals eps. Don’t do that. This changes the machine , which certainly will
give you strange results.

It is also natural to use names like step, phase, etc., for certain variables. Note,
however, that these variables take precedence over M-files with the same
names, so be sure you don’t use variable names that are also names of M-files.

ε

3 Tutorial

3-112

4

Function Reference

Functions — By Category (p. 4-3)

Functions — Alphabetical List (p. 4-12)

4 Function Reference

4-2

This chapter contains detailed descriptions of all of the functions in the System
Identification Toolbox. It begins with a list of functions grouped by subject area
and continues with the entries in alphabetical order.

Information is also available through the online Help facility. By typing a
function name without arguments, you also get immediate syntax help about
its arguments for most functions.

The following are the function categories:

• “Help Functions”

• “Graphical User Interface”

• “Simulation and Prediction”

• “Data Manipulation”

• “Nonparametric Estimation”

• “Parameter Estimation”

• “Model Structure Creation”

• “Manipulating Model Structures”

• “Model Conversion”

• “Model Analysis”

• “Model Validation”

• “Assessing Model Uncertainty”

• “Model Structure Selection”

• “Recursive Parameter Estimation”

• “General”

Functions — By Category

4-3

Functions — By Category

Help Functions

Graphical User Interface

Simulation and Prediction

Data Manipulation

advice Advice about data set or estimated model

help ident List System Identification Toolbox commands

idhelp Brief help for System Identification Toolbox
commands

idprops,
help idprops

List and explain the object properties

ident Open System Identification Toolbox GUI

midprefs Set directory for storing idprefs.mat containing GUI
startup information

idinput Generate identification input signals

idmdlsim Simulate idmodel objects in Simulink

pe Compute prediction errors associated with model and
data set

predict Predict output k steps ahead

sim Simulate linear models with confidence regions

advice Advice about data set or estimated model

delayest Estimate time delay (dead time) from data

detrend Remove trends from output-input data

diff Difference signals in iddata objects

4 Function Reference

4-4

Nonparametric Estimation

fcat Concatenate frequency-domain signals in idfrd and
iddata objects

feedback Investigate feedback presence in iddata sets

fft/ifft Transform iddata objects between the time and the
frequency domains

fselect Select frequencies from idfrd object

get Query idmodel, idfrd, and iddata properties

getexp Retrieve experiment(s) from multiple-experiment
iddata objects

iddata Package input-output into iddata object

idfilt Filter data using user-defined passbands, general
filters, or Butterworth filters

isreal Determine whether model or data set contains real
parameters or data

merge (iddata) Merge data sets into one iddata object

misdata Reconstruct missing input and output data

nkshift Shift data sequences

nuderst Set step size for numerical differentiation

pexcit Determine level of excitation of input signals

plot (iddata) Plot input-output iddata

realdata Determine whether iddata is based on real-valued
signals

resample Resample data by interpolation and decimation

set Set properties of models and iddata sets

covf Estimate time-series covariance functions

cra Prewhitened-based correlation analysis and impulse
response

Functions — By Category

4-5

delayest Estimate time delay (dead time) from data

etfe Estimate empirical transfer functions and
periodograms

feedback Investigate feedback presence in iddata sets

impulse Plot impulse response with confidence regions

pexcit Determine level of excitation of input signals

spa Estimate frequency response and spectrum using
spectral analysis

spafdr Estimate frequency response and spectrum using
spectral analysis with frequency-dependent resolution

step Plot step response with confidence regions

4 Function Reference

4-6

Parameter Estimation

Model Structure Creation

ar Estimate parameters of AR model for scalar time
series

armax Estimate parameters of ARMAX or ARMA model

arx Estimate parameters of ARX or AR model using least
squares

bj Estimate parameters of Box-Jenkins model

ivar Estimate AR model using instrumental variable
methods

iv4 Estimate ARX model using four-stage instrumental
variable method

oe Estimate parameters of output-error model

n4sid Estimate state-space model using subspace method

pem Estimate parameters of general linear models

idarx Construct idarx model from ARX polynomials

idfrd Construct idfrd object from idmodel object or
functions

idgrey Construct grey-box linear model using user-defined
M-file

idpoly Create structure for input-output models using
numerator and denominator polynomials

idproc Create simple, continuous-time process models

idss Create structure for linear state-space models with
known and unknown parameters

Functions — By Category

4-7

Manipulating Model Structures

Model Conversion

get Query idmodel, idfrd, and iddata properties

init Set or randomize initial parameter values

merge (idmodel) Merge estimated models

selstruc Select model order (structure)

set Set properties of models and iddata sets

setstruc Set matrix structure for idss objects

arxdata ARX parameters with variance information from
idmodel models

balred Reduce model order (requires Control System Toolbox)

c2d Convert model from continuous to discrete time

d2c Convert model from discrete to continuous time

frd Convert idfrd objects to freqency-response-data LTI
models of Control System Toolbox

freqresp Compute frequency function for model

fselect Select frequencies from idfrd object

idfrd Convert idmodel to idfrd object containing frequency
functions and spectra

noisecnv Convert idmodel with noise channels to model with
only measured channels

polydata Convert model to input-output polynomials

ss Convert idmodel objects to state-space LTI models of
Control System Toolbox

ssdata Convert model to state-space form

tf Convert idmodel objects to transfer-function LTI
models of Control System Toolbox

4 Function Reference

4-8

Model Analysis

Model Validation

tfdata Convert model to transfer-function form

zpk Convert idmodel objects to zero-pole-gain LTI models
of Control System Toolbox

zpkdata Compute zeros, poles, and transfer-function gains of
models

advice Advice about the data set or estimated model

bode Plot frequency functions in Bode diagram form with
confidence regions

compare Compare measured outputs with model outputs

ffplot Plot frequency functions and spectra

impulse Plot impulse response with confidence regions

isreal Determine whether model or data set contains real
parameters or data

nyquist Plot Nyquist curve of frequency function with
confidence regions

present Display information in idmodel model, including
uncertainty

pzmap Plot zeros and poles with confidence regions

step Plot step response with confidence regions

view Plot model characteristics using LTI viewer in Control
System Toolbox

aic Akaike Information Criterion for estimated model

arxstruc Compute loss function for set of different model
structures of single-output ARX type

compare Compare measured outputs with model outputs

Functions — By Category

4-9

fpe Akaike Final Prediction Error for estimated model

pe Compute prediction errors associated with model and
data set

predict Predict output k steps ahead

resid Compute and test model residuals (prediction errors)

selstruc Select model order (structure)

sim Simulate linear models with confidence regions

4 Function Reference

4-10

Assessing Model Uncertainty

Model Structure Selection

arxdata ARX parameters with variance information from
idmodel models

bode Plot frequency functions in Bode diagram form with
confidence regions

impulse Plot impulse response with confidence regions

nyquist Plot Nyquist curve of frequency function with
confidence regions

polydata Convert model to input-output polynomials

pzmap Plot zeros and poles with confidence regions

sim Simulate linear models with confidence regions

simsd Simulate models with uncertainty using Monte Carlo
method

ssdata Convert model to state-space form

step Plot step response with confidence regions

tfdata Convert model to transfer-function form

zpkdata Compute zero, poles, and transfer-function gains of
models

arxstruc Compute loss function for set of different model
structures of single-output ARX type

ivstruc Compute loss functions for sets of output-error model
structures

n4sid Estimate state-space model using subspace method

pem Estimate parameters of general linear models

selstruc Select model order (structure)

struc Generate model structure matrices

Functions — By Category

4-11

Recursive Parameter Estimation

General

rarmax Estimate recursively parameters of ARMAX or ARMA
model

rarx Estimate recursively parameters of ARX or AR models

rbj Estimate recursively parameters of Box-Jenkins
model

roe Estimate output-error models (IIR-filters) recursively

rpem Estimate general input-output models using recursive
prediction error method

rplr Estimate general input-output models using recursive
pseudolinear regression method

segment Segment data and estimate models for each segment

advice Advice about data set or estimated model

get Query idmodel, idfrd, and iddata properties

set Set properties of models and iddata sets

setpname Set mnemonic parameter names for black-box model
structures

size Dimensions of iddata, idmodel, and idfrd objects

timestamp Return date and time when object was created or last
modified

4 Function Reference

4-12

Functions — Alphabetical List 4

For ease of use, most functions have several default arguments. The Syntax
first lists the function with the necessary input arguments and then with all
the possible input arguments. The functions can be used with any number of
arguments between these extremes. The rule is that missing, trailing
arguments are given default values, as defined in the manual. Default values
are also obtained by entering the arguments as the empty matrix [].

MATLAB does not require that you specify all of the output arguments; those
not specified are not returned. For functions with several output arguments in
the System Identification Toolbox, missing arguments are, as a rule, not
computed, in order to save time.

The following reference pages are listed in alphabetical order.

advice

4-19

4advicePurpose Advice about data set or estimated model

Syntax advice(Model)
advice(Data)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

Data is any data set in the iddata format.

The command gives text information to the Command Window about the data
set or the model. Typical advice given is

• For data sets,

- The excitation level of the signals and what consequences this has for what
model orders can be supported (see also pexcit)

- Whether detrending should be applied

- Presence of output feedback in the data, and its consequences (see also
feedback)

• For models,

- Whether the model appears to have captured the essential dynamics of the
system, and/or the disturbance characteristics

- Whether the model seems to be of unnecessarily high order

- Whether significant feedback effects in the validation data can be detected

See Also feedback, pexcit

aic

4-20

4aicPurpose Akaike Information Criterion for estimated model

Syntax am = aic(Model1,Model2,...)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

am is returned as a row vector with the values of Akaike’s Information Criterion
(AIC) for each of the models. The AIC is given as

where V is the loss function, d is the number of estimated parameters, and N
is the number of estimation data values.

Here

(4-1)

where is the parameter estimate.

The AIC is formally defined as the value of the negative log-likelihood function
at the estimated parameters plus the number of estimated parameters. The
connection between this and the expressions above is as follows (cf (7.92)ff in
Ljung (1999)):

If the disturbance source is Gaussian with covariance matrix , the logarithm
of likelihood function is

Maximizing this analytically with regard to gives, and then maximizing the
result with regard to , gives

where p is the number of outputs and V is defined by (Equation 4-1). After
removing constants and suitable normalization, the desired expression is
reached.

AIC V() 2d
N
-------+log=

V det 1
N
---- ε t θ̂N,() ε t θ̂N,()()

T

1

N

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

θ̂N

Λ

L θ Λ,() 1
2
---– ε t θ,()TΛ 1– ε t θ,() N

2
---- detlog Λ– const+

1

N

∑=

Λ
θ

L θ Λ
ˆ

,() const Np
2

-------- N
2
---- V()log+ +=

aic

4-21

References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo, fpe

Algorithm Properties

4-22

4Algorithm PropertiesPurpose Algorithm properties affecting estimation process

Syntax idprops algorithm
m.algorithm

Description All the idmodel objects in the toolbox, idarx, idss, idpoly, idproc, and
idgrey, have a property Algorithm, which is a structure that contains a
number of options that govern the estimation algorithms. The fields of this
structure can be individually set and retrieved in the usual way, such as
get(m,'MaxIter') or m.SearchDirection = 'gn'. Also, autofill applies and
the names are case insensitive.

Note Algorithm is a property of idmodel. Any algorithm property can be
separately set as above. Also, if you have a standard algorithm setup that you
prefer, you can set those properties simultaneously, as in
m = pem(Data,mi,'alg',myalg).

Note The algorithm properties, like all other model properties, are inherited
by the resulting model m. If you continue the estimation using m as the initial
model, all previously set algorithm features will thus apply, unless you specify
otherwise.

The fields of Algorithm are as follows:

Applying to All Estimation Methods

• Focus: This property affects the weighting applied to the fit between the
model and the data. It can be used to assure that the model approximates the
true system well over certain frequency intervals. Focus can assume the
following values:

- 'Prediction': This is the default and means that the model is determined
by minimizing the prediction errors. It corresponds to a frequency
weighting that is given by the input spectrum times the inverse noise
model. Typically, this favors a good fit at high frequencies. From a

Algorithm Properties

4-23

statistical variance point of view, this is the optimal weighting, but then
the approximation aspects (bias) of the fit are neglected.

- 'Simulation': This means that frequency weighting of the transfer
function fit is given by the input spectrum. Frequency ranges where the
input has considerable power will thus be better described by the model.
In other words, the model approximation is such that the model will
produce as good simulations as possible, when applied to inputs with the
same spectra as used for the estimation. For models that have no
disturbance model, that is y = G u + e, (A=C=D=1 for idpoly models and
K = 0 for idss models) there is no difference between 'Simulation' and
'Prediction'. For models with a disturbance description, that is, y = Gu
+ H e, G is first estimated with H = 1 and then H is estimated by a
prediction error method, keeping the estimated transfer function fixed.
This option also guarantees a stable transfer function G.

- 'Stability': The resulting model is guaranteed to be stable, but a
prediction weighing is still maintained. Note that forcing the model to be
stable could mean that a bad model is obtained. Use only when you know
the system to be stable.

- A row vector or matrix defining passbands:
[wl,wh] or [w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh define upper and lower limits for a passband. With
several rows, the union of passbands defined be each row is obtained. The
fit between data and model will the be focused on the passband(s) thus
defined.

- Any SISO linear filter: The transfer function from input to output is
determined by a frequency fit with this filter times the input spectrum as
weighting function. The disturbance model is determined by a prediction
error method, keeping the transfer function estimate fixed, as in the
simulation case. To obtain a good model fit over a special frequency range,
the filter should thus be chosen with a passband over this range. For a
model with no disturbance model, the result is the same as first applying
prefiltering to data using idfilt. The filter can be specified in a few
different ways as

Any single-input-single-output idmodel

An ss, tf, or zpk model from the Control System Toolbox

{A,B,C,D} with the state-space matrices for the filter

Ĝ

Algorithm Properties

4-24

{numerator, denominator} with the transfer function
numerator/denominator of the filter

- For frequency-domain data, 'Focus' can also be given as a column vector
of weights. The vector must be of the same size as Data.Frequency. Each
input and output response in the data is then multiplied by the
corresponding weight at the respective frequencies.

• MaxSize: No matrix with more than MaxSize elements is formed by the
algorithm, whenever possible. Instead, for loops are used. MaxSize thus
decides the memory/speed tradeoff, and can prevent slow use of virtual
memory. MaxSize can be any positive integer, but the input-output data
must contain fewer than MaxSize elements. The default value of MaxSize is
'Auto', which means that the value is determined in the M-file idmsize. You
can edit this file to optimize speed on a particular computer. Generally
speaking, MaxSize does not affect the numerical properties of the estimate.
The only exception is when you use InitialState = 'backcast' for
frequency-domain data. Then the frequency ranges where the backcasting
takes place may depend on MaxSize, resulting in slightly different estimates.

• FixedParameter: A list of parameters that will be kept fixed to the
nominal/initial values and not estimated. This is a vector of integers
containing the indices of the fixed parameters. The numbering of the
parameters is the same as in the model property 'ParameterVector'. The
parameter names from the property 'PName' can also be used. For structured
state-space models, it is easier to fix/unfix parameters by the structure
matrices As, Bs, etc. See idss. When you use parameter names to specify the
fixed parameters, Fixedparameter is a cell array of strings. The strings can
contain the wildcards '*' (meaning any continuation of the given string) and
'?' (meaning any character). For example, if all disturbance model
parameters start with 'k', FixedParameter = {'k*'} will fix all these
parameters. The function setpname can be useful in this context.

Applying to n4sid, Estimating State-Space Models
These also apply to pem for estimating black-box state-space models, since
these are initialized by the n4sid estimate.

• N4Weight: This property determines some weighting matrices used in the
singular-value decomposition that is a central step in the algorithm. Two
choices are offered: 'MOESP', which corresponds to the MOESP algorithm by
Verhaegen, and 'CVA', which is the canonical variable algorithm by

Algorithm Properties

4-25

Larimore. See the reference page for n4sid. The default value is 'N4Weight'
= 'Auto', which gives an automatic choice between the two options.

• N4Horizon: Determines the prediction horizons forward and backward used
by the algorithm. This is a row vector with three elements:
N4Horizon = [r sy su], where r is the maximum forward prediction
horizon; that is, the algorithm uses up to r step-ahead predictors. sy is the
number of past outputs, and su is the number of past inputs that are used for
the predictions. For an exact definition of these integers, see pages 209 and
210 in Ljung (1999), where they are called r, s1, and s2. These numbers can
have a substantial influence on the quality of the resulting model, and there
are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix
means that each row of 'N4Horizon' is tried, and the value that gives the
best (prediction) fit to data is selected. (This option cannot be combined with
selection of model order.) If you specify only one column in 'N4Horizon', the
interpretation is r=sy=su. The default choice is 'N4Horizon' = 'Auto',
which uses an Akaike Information Criterion (AIC) for the selection of sy and
su.

Applying to Estimation Methods Using Iterative Search for Minimizing a
Criterion, That Is, armax, bj, oe, and pem

• Trace: This property determines the information about the iterative search
that is provided to the MATLAB Command Window.

- 'Trace' = 'Off': No information is written to the screen.

- 'Trace' = 'On': Information about criterion values and the search
process is given for each iteration.

- 'Trace' = 'Full': The current parameter values and the search direction
are also given (except in the 'Free' SSParameterization case for idss
models).

• LimitError: This variable determines how the criterion is modified from
quadratic to one that gives linear weight to large errors. Errors larger than
LimitError times the estimated standard deviation will carry a linear
weight in the criterions.The default value of LimitError is 1.6.
LimitError = 0 disables the robustification and leads to a purely quadratic
criterion. The standard deviation is estimated robustly as the median of the
absolute deviations from the median, divided by 0.7. (See Equations (15.9)
and (15.10) in Ljung (1999).) When estimating with frequency-domain data,
LimitError is set to zero.

Algorithm Properties

4-26

• MaxIter: The maximum number of iterations performed during the search
for minimum. The iterations stops when MaxIter is reached or some other
stopping criterion is satisfied. The default value of MaxIter is 20. Setting
MaxIter = 0 returns the result of the startup procedure. The actual number
of used iterations is given by the property EstimationInfo.Iterations.

• Tolerance: Based on the Gauss-Newton vector computed at the current
parameter value, an estimate is made of the expected improvement of the
criterion at the next iteration. When this expected improvement is less than
Tolerance, measured in percent, the iterations are stopped. Default value is
0.01.

• SearchDirection: The direction along which a line search is performed to
find a lower value of the criterion function. It may assume the following
values:

- 'gn': The Gauss-Newton direction (inverse of the Hessian times the
gradient direction). If no improvement is found along this direction, the
gradient direction is also tried.

- 'gns': A regularized version of the Gauss-Newton direction. Eigenvalues
less than GnsPinvTol (see “Advanced” below) of the Hessian are neglected,
and the Gauss-Newton direction is computed in the remaining subspace.

- 'gna': An adaptive version of gns, suggested by Wills and Ninness (IFAC
World congress, Prague 2005). Eigenvalues less than gamma*max(sv) of
the Hessian are neglected , where sv are the singular values of the
Hessian. The Gauss-Newton direction is computed in the remaining
subspace. gamma has the initial value InitGnaTol (see below) and is
increased by a factor LmStep each time the search fails to find a lower
value of the criterion in less than 5 bisections. It is decreased by a factor
2LmStep each time a search is successful without any bisections.

- 'lm': The Levenberg-Marquardt method is used. This means that the next
parameter value is -pinv(H+d*I)*grad from the previous one, where H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a
number that is increased until a lower value of the criterion is found.

- 'Auto': A choice among the above is made in the algorithm. This is the
default choice.

• Advanced: This is a structure that contains detailed algorithm choices that
normally the user does not need to get involved in. For detailed explanations,
you must examine the code. 'Advanced' has the following fields:

Algorithm Properties

4-27

- Search: Contains fields with relevance for the iterative search:
a GnsPinvTol: The tolerance for the pseudoinverse used to compute the gns

direction. See above. Default is 10^-9.

b InitGnaTol: The initial value of gamma in the gna search algorithm.
Default is InitGnaTol =10^-4

c LmStep: The next value of d in the LM method is lmstep times the
previous one. Default is LmStep = 2.

d StepReduction: In the line search used for directions other than LM, the
step is reduced by the factor StepReduction in each try. Default is
StepReduction = 2.

e MaxBisection: The maximum number of bisections used by the line
search along the search direction. Default is 25.

f LmStartValue: The starting value of d in the LM method. Default is
0.001.

g RelImprovement: The iterations are stopped if the relative improvement
of the criterion is less than RelImprovement. Default is
RelImprovement = 0.

- Threshold: Contains fields with thresholds for several tests:
a Sstability: used for stability test of continuous-time models. Model is

considered stable if its rightmost pole is to the left of Sstability. Default
is 0.

b Zstability: used for stability test of discrete-time models. Model is
considered stable if all poles are within the distance Zstability from the
origin. Default is 1.01.

- AutoInitialState: When InitialState = 'Auto', the state is estimated
if the ratio of the prediction error norm with zero initial state to the norm
with estimated initial state exceeds AutoInitialState. Default is 1.2.

References For the iterative minimization, see Dennis, J.E., Jr., and R.B. Schnabel,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
Prentice Hall, Englewood Cliffs, N.J., 1983.

For a general reference to the identification algorithms, see Ljung (1999),
Chapter 10.

See Also armax, bj, EstimationInfo, n4sid, oe, pem

ar

4-28

4arPurpose Estimate parameters of AR model for scalar time series

Syntax m = ar(y,n)
[m ,refl] = ar(y,n,approach,window)
[m,refl] = ar(y,n,approach,window,Prop1,Value1,Prop2,Value2,...)

Description The parameters of the AR model structure

are estimated using variants of the least squares method.

The iddata object y contains the time-series data (just one output channel).
The scalar n specifies the order of the model to be estimated (the number of A
parameters in the AR model).

Note that the routine is for scalar time series only. For multivariate data use
arx.

The estimate is returned in m and stored as an idpoly model. For the two
lattice-based approaches, 'burg' and 'gl' (see below), the variable refl is
returned, containing the reflection coefficients in the first row and the
corresponding loss function values in the second. The first column is the
zeroth-order model, so that the (2,1) element of refl is the norm of the time
series itself.

Variable approach allows you to choose an algorithm from a group of several
popular techniques for computing the least squares AR model. Available
methods are as follows:

approach = 'fb': The forward-backward approach. This is the default
approach. The sum of a least squares criterion for a forward model and the
analogous criterion for a time-reversed model is minimized.

approach = 'ls': The least squares approach. The standard sum of squared
forward prediction errors is minimized.

approach = 'yw': The Yule-Walker approach. The Yule-Walker equations,
formed from sample covariances, are solved.

approach = 'burg': Burg’s lattice-based method. The lattice filter equations
are solved using the harmonic mean of forward and backward squared
prediction errors.

A q()y t() e t()=

ar

4-29

approach = 'gl': A geometric lattice approach. As in Burg’s method, but the
geometric mean is used instead of the harmonic one.

Windowing, within the context of AR modeling, is a technique for dealing with
the fact that information about past and future data is lacking. There are a
number of variants available:

window = 'now': No windowing. This is the default value, except when
approach = 'yw'. Only actually measured data are used to form the
regression vectors. The summation in the criteria starts only at time n.

window = 'prw': Prewindowing. Missing past data are replaced by zeros, so
that the summation in the criteria can be started at time zero.

window = 'pow': Postwindowing. Missing end data are replaced by zeros, so
that the summation can be extended to time N + n (N being the number of
observations).

window = 'ppw': Pre- and postwindowing. This is used in the Yule-Walker
approach.

The combinations of approaches and windowing have a variety of names. The
least squares approach with no windowing is also known as the covariance
method. This is the same method that is used in the arx routine. The MATLAB
default method, forward-backward with no windowing, is often called the
modified covariance method. The Yule-Walker approach, least squares plus
pre- and postwindowing, is also known as the correlation method.

Possible property name/property value pairs are

- 'MaxSize'/Integer. See Algorithm Properties for an explanation of
maxsize.

- 'Ts'/Real positive number. Setting the sampling time (overriding the
sampling time of y.

- 'Covariance'/'None': Suppressing the calculation of the covariance
matrix.

Examples Compare the spectral estimates of Burg’s method with those found from the
forward-backward nonwindowed method, given a sinusoid in noise signal.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');

ar

4-30

mfb = ar(y,4);
bode(mb,mfb)

References Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice Hall,
Englewood Cliffs, 1987, Chapter 8.

See Also arx, etfe, ivar, spa

armax

4-31

4armaxPurpose Estimate parameters of ARMAX or ARMA model

Syntax m = armax(data,orders)
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk)
m = armax(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description armax returns m as an idpoly object with the resulting parameter estimates,
together with estimated covariances.

armax estimates the parameters of the ARMAX model structure

using a prediction error method.

data is an iddata object containing the output-input data. Only time domain
data are supported by armax. Use oe for frequency-domain data instead. The
model orders can be specified as (...,'na',na,'nb',nb,...) or by setting the
argument orders to

orders = [na nb nc nk]

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is
the delay. Specifically,

Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the ARMAX model given in idpoly format. See
“Polynomial Representation of Transfer Functions” on page 3-11 for more
information.

For multiinput systems, nb and nk are row vectors, such that the kth entry
corresponds to the order and delay associated with the kth input.

A q()y t() B q()u t nk–() C q()e t()+=

na: A q() 1 a1q 1– … anaq na–+ + +=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nc: C q() 1 c1q 1– … cncq nc–+ + +=

armax

4-32

If data has no input channels and just one output channel (that is, it is a time
series), then

orders = [na nc]

and armax calculates an ARMA model for the time series

The structure and the estimation algorithm are affected by any property
name/property value pairs that are set in the input argument list. Useful
properties are 'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for details of these properties
and their possible values.

armax does not support multioutput models. Use the state-space model for this
case (see n4sid and pem).

Algorithm A robustified quadratic prediction error criterion is minimized using an
iterative search algorithm, whose details are governed by the properties
'SearchDirection', 'MaxIter', 'Tolerance', and 'Advanced'. The iterations
are terminated when MaxIter is reached, when the expected improvement is
less than Tolerance, or when a lower value of the criterion cannot be found.
Information about the search is contained in m.EstimationInfo.

The initial parameter values for the iterative search, if not specified in orders,
are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the property LimitError as
well as on the estimated standard deviation of the residuals from the initial
parameter estimate. It is not recalculated during the minimization.

A stability test of the predictor is performed to ensure that only models
corresponding to stable predictors are tested. Generally, both and
(if applicable) must have all their zeros inside the unit circle.

Information about the minimization is furnished to the screen in case the
property 'Trace' is set to 'On' or 'Full'. With 'Trace' = 'Full', current and
previous parameter estimates (in column vector form, listing parameters in
alphabetical order) as well as the values of the criterion function are given. The

A q()y t() C q()e t()=

C q() Fi q()

armax

4-33

Gauss-Newton vector and its norm are also displayed. With 'Trace' = 'On'
just criterion values are displayed.

References Ljung (1999), Section 10.2.

See Also arx, bj, idmodel, idpoly, oe, pem, Algorithm Properties, EstimationInfo

arx

4-34

4arxPurpose Estimate parameters of ARX or AR model using least squares

Syntax m = arx(data,orders)
m = arx(data,'na',na,'nb',nb,'nk',nk)
m= arx(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description The parameters of the ARX model structure

are estimated using the least squares method.

data is an iddata object that contains the output-input data. Both time and
frequency-domain signals are supported, and data can also be a frd or idfrd
frequency-response data object. However, multioutput continuous-time models
are not supported by arx.

orders is given as

orders = [na nb nk]

defining the orders and delay of the ARX model. Specifically, in discrete time

See “Polynomial Representation of Transfer Functions” on page 3-11 for more
information. The model orders can also be defined by explicit pairs
(...,'na',na,'nb',nb,'nk',nk,...).

m is returned as the least squares estimates of the parameters. For
single-output data this is an idpoly object, otherwise an idarx object.

For a time series, data contains no input channels and orders = na. Then an
AR model of order na for y is computed.

Models with several inputs

A q()y t() B q()u t nk–() e t()+=

na: A q() 1 a+ 1q 1– … anaq na–+ +=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

A q()y t() e t()=

A q()y t() B1 q()u1 t nk1–() …Bnu q()unu t nknu–() e t()+ +=

arx

4-35

are handled by allowing nb and nk to be row vectors defining the orders and
delays associated with each input.

Multioutput Models
Models with several inputs and several outputs are handled by allowing na, nb,
and nk to contain one row for each output number. See “Multivariable ARX
Models: the idarx Model” on page 3-43 for exact definitions. In the multioutput
case, arx minimizes the trace of the prediction error covariance matrix, that is,
the norm

This can be changed to an arbitrary quadratic norm

with a weighting matrix Lambda, by

m = arx(data,orders,'NoiseVariance', Lambda)

In general arx can be called with another ARX model m_initial as an
argument.

m = arx(data,m_initial)

Then the orders and the weighting matrix for the prediction errors are taken
from m_initial. You can further modify m_initial by adding a list of property
name/property value pairs to the arguments. This is especially useful if some
parameters should be fixed by 'FixedParameter'.

Continuous-Time Models
For models with one output, continuous-time models can be estimated from
continuous-time (frequency-domain) data. The orders are then interpreted as
na being the number of estimated denominator coeffcients and nb being the
number of estimated numerator coefficients. This means that na = 4, nb = 2
gives the model

eT t()e t()

t 1=

N

∑

eT t()Λ 1– e t()

t 1=

N

∑

arx

4-36

For continuous-time models, the delay parameters nk have no meaning and
should be omitted. Note that

• It is often useful to limit the fit to a smaller frequency range when using
continuous-time data:
m = arx(datac,[na nb],'focus',[0 wh])

• Estimating continuous-time ARX models often gives some bias. It might be
better to use the oe method.

Further Options
The algorithm and model structure are affected by the property name/property
value list in the input argument.

Useful options are reached by the properties 'Focus', 'InputDelay',
'FixedParameter', and 'MaxSize'.

For time-domain data the signals are shifted, so that unmeasured signals are
never required in the predictors. There is thus no need to estimate initial
conditions in that case. For frequency-domain data, however, adjusting the
data by “initial conditions” that support circular convolution may be necessary.
See “Initial States for Frequency Domain Data” on page 3-101.

It is then helpful to use the property name/property value pair
'InitialState'/init, where init is one of 'zero', 'estimate', or 'auto'.
The default is 'auto', which makes a data-dependent choice between 'zero'
(no adjustment) and 'estimate'.

See Algorithm Properties for details of these properties and possible values.

When the true noise term in the ARX model structure is not white noise
and na is nonzero, the estimate does not give a correct model. It is then better
to use armax, bj, iv4, or oe.

Algorithm The least squares estimation problem is an overdetermined set of linear
equations that is solved using QR factorization.

G s()
b1s b2+

s4 a1s3 a2s2 a3s a4+ + + +
---=

e t()

arx

4-37

The regression matrix is formed so that only measured quantities are used (no
fill-out with zeros). When the regression matrix is larger than MaxSize, the QR
factorization is performed in a for loop.

Examples Here is an example that generates data and estimates an ARX model.

A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);

See Also ar, ivx, iv4, Algorithm Properties, EstimationInfo

arxdata

4-38

4arxdataPurpose ARX parameters with variance information from idmodel models

Syntax [A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Description m is the model as an idarx or idpoly model object. arxdata works on any idarx
model. For idpoly it gives an error unless the underlying model is an ARX
model, that is, the orders nc=nd=nf=0. (See the reference page for idpoly.)

A and B are returned in the standard multivariable ARX format (see idarx),
describing the model.

Here and are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the vector

, and nu is the number of inputs.) See “Multivariable ARX Models: the
idarx Model” on page 3-43.

The arguments A and B are 3-D arrays that contain the A matrices and the B
matrices of the model in the following way:

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that leading entries in
B equal to zero means delays in the model. For a time series, B = [].

dA and dB are the estimated standard deviations of A and B.

See Also idarx

y t() A1y t 1–() A2y t 2–() … Anay t na–()+ + + + =

B0u t() B1u t 1–() … Bnbu t nb–() e t()+ + + +

Ak Bk

y t()

arxstruc

4-39

4arxstrucPurpose Compute loss functions for set of different model structures of single-output
ARX type

Syntax V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type.
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

Each of ze and zv is an iddata object containing output-input data.
Frequency-domain data and idfrd objects are also supported. Models for each
of the model structures defined by NN are estimated using the data set ze. The
loss functions (normalized sum of squared prediction errors) are then computed
for these models when applied to the validation data set zv. The data sets ze
and zv need not be of equal size. They could, however, be the same sets, in
which case the computation is faster.

Note that arxstruc is intended for single-output systems only.

The output argument V is best analyzed using selstruc. It contains the loss
functions in its first row. The remaining rows of V contain the transpose of NN,
so that the orders and delays are given just below the corresponding loss
functions. The last column of V contains the number of data points in ze. The
selection of a suitable model structure based on the information in v is
normally done using selstruc. See “Model Structure Selection and Validation”
on page 3-70 for advice on model structure selection and cross validation.

See Algorithm Properties for an explanation of maxsize.

Examples Compare first- to fifth-order models with one delay using cross validation on
the second half of the data set. Then select the order that gives the best fit to
the validation data set.

NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);

arxstruc

4-40

See Also arx, ivstruc, n4sid, selstruc, struc

balred

4-41

4balredPurpose Reduce model order (requires Control System Toolbox)

Syntax MRED = balred(M)
MRED = balred(M,ORDER,'DisturbanceModel','None')

Description This function reduces the order of any model M given as an idmodel object. The
resulting reduced-order model, MRED, is an idss model.

The function requires several routines in the Control System Toolbox.

ORDER: The desired order (dimension of the state-space representation). If
ORDER = [], which is the default, a plot shows how the diagonal elements of the
observability and controllability Gramians of a balanced realization decay with
the order of the representation. You are then prompted to select an order based
on this plot. The idea is that such a small element has a negligible influence
on the input-output behavior of the model. We recommend that you choose an
order such that only large elements in these matrices are retained.

'DisturbanceModel': If the property DisturbanceModel is set to 'None', then
an output-error model MRED is produced: that is, one with the Kalman gain
equal to zero (see Equation 3-23 in “Chapter 3, “Tutorial”). Otherwise (default),
the disturbance model is also reduced.

The function recognizes whether M is a continuous- or discrete-time model and
performs the reduction accordingly. The resulting model, MRED, is similar to M
in this respect.

There are several options for how the reduction is performed: AbsTol, RelTol,
Offset, Elimination.

Algorithm The function balred from the Control System Toolbox is used. The plot, in case
ORDER = [], shows the vector g returned by balreal.

Examples Build a high-order multivariable ARX model, reduce its order to 3, and
compare the frequency responses of the original and reduced models:

M = arx(data,[4∗ones(3,3),4∗ones(3,2),ones(3,2)]);
MRED = balred(M,3);
bode(M,MRED)

Use the reduced-order model as an initial condition for a third-order
state-space model.

balred

4-42

M2 = pem(data,MRED);

See Also balreal

bj

4-43

4bjPurpose Estimate parameters of Box-Jenkins model

Syntax m = bj(data,orders)
m = bj(data,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = bj(data,orders,'Property1',Value1,'Property2',Value2,...)

Description bj returns m as an idpoly object with the resulting parameter estimates,
together with estimated covariances. The bj function estimates parameters of
the Box-Jenkins model structure

using a prediction error method.

data is an iddata object containing the output-input data. Frequency-domain
signals are not supported by bj. Use oe instead.

The model orders can be specified by setting the argument orders to

orders = [nb nc nd nf nk]

The parameters nb, nc, nd, and nf are the orders of the Box-Jenkins model and
nk is the delay. Specifically,

The orders can also be defined as property name/property value pairs
(...,'nb',nb,...). Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the Box-Jenkins model given in idpoly format.
See “Polynomial Representation of Transfer Functions” on page 3-11 for more
information.

y t() B q()
F q()
------------u t nk–() C q()

D q()
-------------e t()+=

nf: F q() 1 f+ 1q 1– … fnfq
nf–+ +=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nc: C q() 1 c+ 1q 1– … cncq nc–+ +=

nd: D q() 1 d+ 1q 1– … dndq nd–+ +=

bj

4-44

For multiinput systems, nb, nf, and nk are row vectors with as many entries as
there are input channels. Entry number i then describes the orders and delays
associated with the ith input.

The structure and the estimation algorithm are affected by any property
name/property value pairs that are set in the input argument list. Useful
properties are 'Focus', 'InitialState', 'Trace', 'MaxIter', 'Tolerance',
'LimitError', and 'FixedParameter'.

See Algorithm Properties and the reference pages for idmodel and idpoly for
details of these properties and their possible values.

bj does not support multioutput models. Use a state-space model for this case
(see n4sid and pem).

Examples Here is an example that generates data and stores the results of the startup
procedure separately.

B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
m0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(m0,[u e]);
z = [y u];
mi = bj(z,[2 2 2 2 1],'MaxIter',0)
m = bj(z,mi,'Maxi',10)
m.EstimationInfo
m = bj(z,m); % Continue if m.es.WhyStop shows that maxiter has

% been reached.
compare(z,m,mi)

Algorithm bj uses essentially the same algorithm as armax with modifications to the
computation of prediction errors and gradients.

See Also armax, idmodel, idpoly, oe, pem

bode

4-45

4bodePurpose Plot frequency functions in Bode diagram form with confidence regions

Syntax bode(m)
[mag,phase,w] = bode(m)
[mag,phase,w,sdmag,sdphase] = bode(m)
bode(m1,m2,m3,...,w)
bode(m1,'PlotStyle1',m2,'PlotStyle2',...)
bode(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)
bode(m1,m2,m3,'sd',sd,'mode',mode,'ap',ap,'fill')

Description bode computes the magnitude and phase of the frequency response of idmodel
and idfrd models. When invoked without left-hand arguments, bode produces
a Bode plot on the screen.

bode(m) plots the Bode response of an arbitrary idmodel or idfrd model m. This
model can be continuous or discrete, and SISO or MIMO. The InputNames and
OuputNames properties of the models are used to plot the responses for different
I/O channels in separate plots. Pressing the Enter key advances the plot from
one input-output pair to the next one. Typing Ctrl+C aborts the plotting in an
orderly fashion

If m contains information about both I/O channels and output noise spectra,
only the I/O channels are shown. To show the output noise spectra, enter
m('n') ('n' for 'noise') in the model list. Analogously, you can select specific
I/O channels with normal subreferencing m(ky,ku).

Argument w
bode(m,w) explicitly specifies the frequency range or frequency points to be
used for the plot or for computing the response.

To focus on a particular frequency interval [wmin,wmax], set w = {wmin,wmax}
(notice the curly brackets). This plots the response for 100 frequency points
logarithmically spaced from wmin to wmax. You can change this to NP points by
using w = {wmin,wmax,NP}.

To use particular frequency points, set w to the vector of desired frequencies.
Use logspace to generate logarithmically spaced frequency vectors. All
frequencies should be specified in rad/s.

bode

4-46

Note that the frequencies cannot be specified for idfrd objects. For those the
plot and response are calculated for the internally stored frequencies.
However, the plot is restricted to the range {wmin,wmax} if this is specified.

If no frequency range is specified, a default choice is made based on the
dynamics of the model.

Property Name/Property Value Pairs 'sd'/sd, 'ap'/ap, and 'mode'/mode
The pairs can appear in any order or be omitted.

• sd: If sd is specified as a number larger than zero, confidence intervals for
the functions are added to the graph as dash-dotted curves (of the same color
as the estimate curve). They indicate the confidence regions corresponding to
sd standard deviations. If an argument 'fill' is included in the argument
list, the confidence region is marked as a filled band instead.

• ap: By default, amplitude and phase plots are shown simultaneously for each
I/O channel present in m. For spectra, phase plots are omitted. To show
amplitude plots only, use ap = 'A'. For phase plots only, use ap = 'P'. The
default is ap = 'B' for both plots.

• mode: To obtain all input/output plots in the same diagram use
mode = 'same'.

Several Models
bode(m1,m2,...,mN) or bode(m1,m2,...mN,w) plots the Bode response of
several idmodel or idfrd models on a single figure. The models can be mixes of
different sizes and continuous/discrete. The sorting of the plots is based on the
InputNames and OutputNames. If the frequencies w are specified, these will
apply to all non-idfrd models in the list. If you want different frequencies for
different models, you should thus first convert them to idfrd objects using the
idfrd command.

bode(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies which color,
line style, and/or marker should be used to plot each system, as in

bode(m1,'r--',m2,'gx')

Arguments The output argument w contains the frequencies for which the response is
given, whether specified among the input arguments or not. The output
arguments mag and phase are 3-D arrays with dimensions

bode

4-47

(number of outputs)x(number of inputs)x(length of w)

For SISO systems, mag(1,1,k) and phase(1,1,k) give the magnitude and
phase (in degrees) at the frequency = w(k). To obtain the result as a normal
vector of responses, use mag = mag(:) and phase = phase(:).

For MIMO systems, mag(i,j,k) is the magnitude of the frequency response at
frequency w(k) from input j to output i, and similarly for phase(i,j,k).

If sdmag and sdphase are specified, the standard deviations of the magnitude
and phase are also computed. Then sdmag is an array of the same size as mag,
containing the estimated standard deviations of the response, and analogously
for sdphase.

See Also etfe, freqresp, idfrd, nyquist, spa, spafdr

ωk

compare

4-48

4comparePurpose Compare measured outputs with model outputs

Syntax compare(data,m);
compare(data,m,k)
compare(data,m,k,'Samples',sampnr,'InitialState',init,'OutputPlots

',Yplots)
compare(data,m1,m2,...,mN)
compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN')
[yh,fit,x0] = compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN',k)

Description data is the output-input data in the usual iddata object format. data can also
be an idfrd object with frequency-response data.

compare computes the output yh that results when the model m is simulated
with the input u. The result is plotted together with the corresponding
measured output y. The percentage of the output variation that is explained by
the model

fit = 100*(1 - norm(yh - y)/norm(y-mean(y)))

is also computed and displayed. For multioutput systems, this is done
separately for each output. For frequency-domain data (or in general for
complex valued data) the fit is still calculated as above, but only the absolute
values of y and yh are plotted.

When the argument k is specified, the k step-ahead prediction of y according to
the model m are computed instead of the simulated output. In the calculation of

, the model can use outputs up to time : , ,
(and inputs up to the current time t). The default value of k is inf, which gives
a pure simulation from the input only. Note that for frequency-domain data,
only simulation (k = inf) is allowed, and for time-series data (no input) only
prediction (k not inf) is possible.

Property Name/Property Value Pairs
The optional property name/property value pairs 'Samples'/sampnr,
'InitialState'/init, and 'OutputPlots'/Yplots can be given in any order.

The argument Yplots can be a cell array of strings. Only the outputs with
OutputName in this array are plotted, while all are used for the necessary
computations. If Yplots is not specified, all outputs are plotted.

yh t() t k– y s() s, t k–= t k– 1– …

compare

4-49

The argument sampnr indicates that only the sample numbers in this row
vector are plotted and used for the calculation of the fit. The whole data record
is used for the simulation/prediction.

The argument init determines how to handle initial conditions in the models:

• init = 'e' (for 'estimate') estimates the initial conditions for best fit.

• init = 'm' (for 'model') used the model’s internally stored initial state.

• init = 'z' (for 'zero') uses zero initial conditions.

• init = x0, where x0 is a column vector of the same size as the state vector
of the models, uses x0 as the initial state.

• init = 'e' is the default.

Several Models
When several models are specified, as in compare(data,m1,m2,...,mN), the
plots show responses and fits for all models. In that case data should contain
all inputs and outputs that are required for the different models. However,
some models might correspond to subselections of channels and might not need
all channels in data. In that case the proper handling of signals is based on the
InputNames and OutputNames of data and the models.

With compare(data,m1,'PlotStyle1',...mN,'PlotStyle2'), the color, line
style, and/or marker can be specified for the curves associated with the
different models. The markers are the same as for the regular plot command.
For example,

compare(data,m1,'g_*',m2,'r:')

If data contains several experiments, separate plots are given for the different
experiments. In this case sampnr, if specified, must be a cell array with as many
entries as there are experiments.

Arguments When output arguments [yh,fit,x0] = compare(data,m1,..,mN) are
specified, no plots are produced.

yh is a cell array of length equal to the number of models. Each cell contains
the corresponding model output as an iddata object.

fit is, in the general case, a 3-D array with fit(kexp,kmod,ky) containing the
fit (computed as above) for output ky, model kmod, and experiment kexp.

compare

4-50

x0 is a cell array, such that x0{kmod} is the estimated initial state for model
number kmod. If data is multiexperiment, X0{kmod} is a matrix whose column
number kexp is the initial state vector for experiment number kexp.

Examples Split the data record into two parts. Use the first one for estimating a model
and the second one to check the model’s ability to predict six steps ahead.

ze = z(1:250);
zv = z(251:500);
m= armax(ze,[2 3 1 0]);
compare(zv,m,6);
compare(zv,m,6,'Init','z') % No estimation of the initial state.

See Also sim, predict

covf

4-51

4covfPurpose Estimate time-series covariance functions

Syntax R = covf(data,M)
R = covf(data,M,maxsize)

Description data is an iddata object and M is the maximum delay -1 for which the
covariance function is estimated. The routine is intended for time-domain data
only.

Let z contain the output and input channels

where y and u are the rows of data.OutputData and data.InputData,
respectively, with a total of nz channels.

R is returned as an nz2 -by- M matrix with entries

where is the jth row of z, and missing values in the sum are replaced by zero.

The optional argument maxsize controls the memory size as explained under
Algorithm Properties.

The easiest way to describe and unpack the result is to use

reshape(R(:,k+1),nz,nz) = E z(t)∗z'(t+k)

Here ' is complex conjugate transpose, which also explains how complex data
is handled. The expectation symbol E corresponds to the sample means.

Algorithm When nz is at most two, and when permitted by maxsize, a fast Fourier
transform technique is applied. Otherwise, straightforward summing is used.

See Also spa

z t() y t()
u t()

=

R i j 1–()nz k 1+,+() 1
N
---- zi t()zj t k+()

t 1=

N

∑ R̂ij k()= =

zj

cra

4-52

4craPurpose Prewhitened-based correlation analysis and impulse response

Syntax cra(data);
[ir,R,cl] = cra(data,M,na,plot);
cra(R);

Description data is the output-input data given as an iddata object. The routine is
intended for time-domain data only.

The routine only handles single-input-single-output data pairs. (For the
multivariate case, apply cra to two signals at a time, or use impulse.) cra
prewhitens the input sequence; that is, cra filters u through a filter chosen so
that the result is as uncorrelated (white) as possible. The output y is subjected
to the same filter, and then the covariance functions of the filtered y and u are
computed and graphed. The cross correlation function between (prewhitened)
input and output is also computed and graphed. Positive values of the lag
variable then correspond to an influence from u to later values of y. In other
words, significant correlation for negative lags is an indication of feedback from
y to u in the data.

A properly scaled version of this correlation function is also an estimate of the
system’s impulse response ir. This is also graphed along with 99% confidence
levels. The output argument ir is this impulse response estimate, so that its
first entry corresponds to lag zero. (Negative lags are excluded in ir.) In the
plot, the impulse response is scaled so that it corresponds to an impulse of
height 1/T and duration T, where T is the sampling interval of the data.

The output argument R contains the covariance/correlation information as
follows:

• The first column of R contains the lag indices.

• The second column contains the covariance function of the (possibly filtered)
output.

• The third column contains the covariance function of the (possibly
prewhitened) input.

• The fourth column contains the correlation function. The plots can be
redisplayed by cra(R).

The output argument cl is the 99% confidence level for the impulse response
estimate.

cra

4-53

The optional argument M defines the number of lags for which the
covariance/correlation functions are computed. These are from -M to M, so that
the length of R is 2M+1. The impulse response is computed from 0 to M. The
default value of M is 20.

For the prewhitening, the input is fitted to an AR model of order na. The third
argument of cra can change this order from its default value na = 10. With
na = 0 the covariance and correlation functions of the original data sequences
are obtained.

plot: plot = 0 gives no plots. plot = 1 (the default) gives a plot of the
estimated impulse response together with a 99% confidence region. plot = 2
gives a plot of all the covariance functions.

An often better alternative to cra is the functions impulse and step, which use
a high-order FIR model to estimate the impulse response.

Examples Compare a second-order ARX model’s impulse response with the one obtained
by correlation analysis.

ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

See Also impulse, step

c2d

4-54

4c2dPurpose Convert model from continuous to discrete time

Syntax md = c2d(mc,T)
md = c2d(mc,T,method)
[md,G] = c2d(mc,T,method)

Description mc is a continuous-time model such as any idmodel object (idgrey, idproc,
idpoly, or idss). md is the model that is obtained when it is sampled with
sampling interval T.

method = 'zoh' (default) makes the translation to discrete time under the
assumption that the input is piecewise constant (zero-order hold).

method = 'foh' assumes the input to be piecewise linear between the sampling
instants (first-order hold).

With the Control System Toolbox, methods 'tustin', 'prewarp', and
'matched' are also supported. In these cases the covariance matrix is not
transformed.

Note that the innovations variance of the continuous-time model is
interpreted as the intensity of the spectral density of the noise spectrum. The
noise variance in md is thus given as /T.

idpoly and idss models are returned in the same format. idgrey structures
are preserved if their CDMfile property is equal to 'cd'. Otherwise they are
transformed to idss objects. idproc models are returned as idgrey objects.

For idpoly models, the covariance matrix is translated by the use of numerical
derivatives. The step sizes used for the differentiation are given by the function
nuderst. For idss, idproc, and idgrey models, the covariance matrix is not
translated, but covariance information about the input-output properties is
included in md. To inhibit the translation of covariance information (which may
take some time), use c2d(mc,T,'covariance','none').

The output argument G is a matrix that transforms the initial state x0 of mc to
the initial state of md as

X0d=G * [X0; u(0)],

 where u(0) is the input at time 0. For idproc models, the state variables
correspond to those of idgrey(mc). For idpoly models, G is returned as the
empty matrix.

λ

λ

c2d

4-55

Examples Define a continuous-time system and study the poles and zeros of the sampled
counterpart.

mc = idpoly(1,1,1,1,[1 1 0],'Ts',0);
md = c2d(mc,0.5);
pzmap(md)

See Also d2c

delayest

4-56

4delayestPurpose Estimate time delay (dead time) from data

Syntax nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description Data is an iddata object containing the input-output data. It can also be an
idfrd object defining frequency-response data. Only single-output data can be
handled.

nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different delays:

The integer na is the order of the A polynomial (default 2). nb is a row vector of
length equal to the number of inputs, containing the order(s) of the B
polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of inputs,
containing the smallest and largest delays to be tested. Defaults are nkmin = 0
and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiinput case, all
inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).

y t() a1y t 1–() … anay t na–() …
b1u t nk–() … bnbu t nb– nk– 1+()+ +

=+ + +

detrend

4-57

4detrend Purpose Remove trends from output-input data

Syntax zd = detrend(z)
zd = detrend(z,o,brkp)

Description z is an iddata object containing the input-output data. detrend removes the
trend from each signal and returns the result as an iddata object zd.

The default (o = 0) removes the zeroth order trends; that is, the sample means
are subtracted. If z is a frequency-domain data object, the response at
frequency 0 is then set to zero,

With o = 1, linear trends are removed after a least squares fit. With brkp not
specified, one single line is subtracted from the entire data record. A
continuous piecewise linear trend is subtracted if brkp contains breakpoints at
sample numbers given in a row vector.

Note that detrend for iddata objects differs somewhat from detrend in the
Signal Processing Toolbox.

Examples Remove a V-shaped trend from the output with its peak at sample number 119,
and remove the sample mean from the input.

zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];

diff

4-58

4diffPurpose Difference signals in iddata objects

Syntax zdi = diff(z)
zdi = diff(z,n)

Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this command
to each of the input/output signals in z.

d2c

4-59

4d2cPurpose Convert model from discrete to continuous time

Syntax mc = d2c(md)
mc = d2c(md,method)
mc = d2c(md,'CovarianceMatrix',cov,'InputDelay',inpd)

Description The discrete-time model md, given as any idmodel object, is converted to a
continuous-time counterpart mc. The covariance matrix of the parameters in
the model is also translated using the Gauss approximation formula and
numerical derivatives of the transformation. The step sizes in the numerical
derivatives are determined by the function nuderst. To inhibit the translation
of the covariance matrix and save time, enter among the input arguments
(...,'CovarianceMatrix,'None',....) (any abbreviations will do).

method is one of the input intersample behaviors 'zoh' (zero-order hold) or
'foh' (first-order hold). If method is not specified, the InterSample behavior of
the data from which md was estimated is used.

With the Control System Toolbox, methods 'tustin', 'prewarp', and
'matched' are also supported. In these cases no translation of the covariance
matrix takes place.

If the discrete-time model contains pure time delays, that is, , then these
are first removed before the transformation is made. These delays are
appended as pure time delay (dead time) to the continuous-time model as the
property InputDelay. To have the time delay approximated by a
finite-dimensional continuous system, enter among the input arguments
(...,'InputDelay',0,...).

If the noise variance is in md, and its sampling interval is T, then the
continuous-time model has an indicated level of noise spectral density equal to
T .

While idpoly and idss models are returned in the same format, idarx models
are returned as idss models mc. The reason is that the transformation does not
preserve the special structure of idarx. The idgrey structures are preserved if
their CDMfile property is equal to cd. Otherwise they are transformed to idss
objects.

nk 1>

λ

λ

d2c

4-60

Note The transformation from discrete to continuous time is not unique. d2c
selects the continuous-time counterpart with the slowest time constants
consistent with the discrete-time model. The lack of uniqueness also means
that the transformation can be ill-conditioned or even singular. In particular,
poles on the negative real axis, in the origin, or in the point 1, are likely to
cause problems. Interpret the results with care.

Examples Transform an identified model to continuous time and compare the frequency
responses of the two models.

m = n4sid(data,3)
mc = d2c(m);
bode(m.mc,'sd',3)

Note that you can include the transformation to continuous time in the n4sid
command by specifying the model to be continuous time.

mc = n4sid(data,3,'Ts',0)

References See “Discrete- and Continuous-Time Models” on page 3-68 and “Spectrum
Normalization and the Sampling Interval” on page 3-107.

See Also c2d, nuderst

EstimationInfo

4-61

4EstimationInfoPurpose Information about estimation process results

Syntax m.EstimationInfo
m.es
m.es.DataLength, etc

Description Any estimated model has the property EstimationInfo, which is a structure
whose fields give information about the results of the estimation. Depending on
whether it is an estimated parametric idmodel or an estimated frequency
response idfrd, EstimationInfo will contain different fields.

idmodel Case
The model structure will contain the properties ParameterVector,
CovarianceMatrix, and NoiseVariance, which are all calculated in the
estimation process (see the reference page for idmodel). In addition,
EstimationInfo contains the following fields:

• Status: Information whether the model has been estimated, or modified
after being estimated.

• Method: Name of the estimation command that produced the model.

• LossFcn: Value of the identification criterion at the estimate. Normally equal
to the determinant of the covariance matrix of the prediction errors, that is,
the determinant of NoiseVariance. Note that the loss function for the
minimization might be different due to LimitError. The value of the
nonrobustified loss function is always stored in LossFcn.

• FPE: Akaike’s Final Prediction Error, defined as
LossFcn *(1+d/N}/(1-d/N), where d is the number of estimated parameters
and N is the length of the data record.

• DataName: Name of the data set from which the model was estimated. This is
equal to the property name of the iddata object. If this was not defined, the
name of the MATLAB iddata variable is used.

• DataLength: Length of the data record.

• DataTs: Sampling interval of the data.

• DataDomain: 'Time' or 'Frequency', depending on the data domain.

• DataInterSample: Intersample behavior of the data from which the model
was estimated. This equals the property InterSample of the iddata object.
(See iddata.)

EstimationInfo

4-62

• WhyStop: For models that have been estimated by iterative search. The
stopping rule that caused the iterations to terminate. Assumes values like
'MaxIter reached', 'No improvement possible along the search
vector', or 'Near (local) minimum'. The latter means that the expected
improvement is less than Tolerance (see Algorithm Properties).

• UpdateNorm: Norm of the Gauss-Newton vector at the last iteration.

• LastImprovement: Relative improvement of the criterion value at the last
iteration.

• Iterations: Number of iterations used in the search.

• InitialState: Option actually used when Model.InitialState = 'auto'.

• N4Weight: For n4sid estimates, or estimates that have been initialized by
n4sid: the actual value of N4Weight used.

• N4Horizon: For n4sid estimates, or estimates that have been initialized by
n4sid: the actual value of N4Horizon used. See n4sid and Algorithm
Properties.

idfrd Case
If the idfrd model is obtained from an estimated parametric model,

g = idfrd(Model)

g.EstimationInfo is the same as Model.EstimationInfo as described above.

For an idfrd model that has been estimated from etfe, spa, or spafdr,
EstimationInfo contains the following fields:

• Status: Whether the model is estimated or directly constructed.

• Method: etfe, spa, or spafdr

• WindowSize: Resolution parameter (or vector) used for the estimation

• DataName, DataLength, DataTs, DataDomain, DataInterSample: Properties of
the estimation data as above.

See Also idfrd, idmodel

etfe

4-63

4etfePurpose Estimate empirical transfer functions and periodograms

Syntax g = etfe(data)
g = etfe(data,M,N)

Description etfe estimates the transfer function g of the general linear model

data contains the output-input data and is an iddata object (time or frequency
domain).

g is given as an idfrd object with the estimate of at the frequencies

w = [1:N]/N∗pi/T

The default value of N is 128.

In case data contains a time series (no input channels), g is returned as the
periodogram of y.

When M is specified other than the default value M = [], a smoothing operation
is performed on the raw spectral estimates. The effect of M is then similar to the
effect of M in spa. This can be a useful alternative to spa for narrowband spectra
and systems, which require large values of M.

When etfe is applied to time series, the corresponding spectral estimate is
normalized in the way that is defined in “Spectrum Normalization and the
Sampling Interval” on page 3-107. Note that this normalization might differ
from the one used by spectrum in the Signal Processing Toolbox.

If the (input) data is marked as periodic (data.Period = integer) and contains
an even number of periods, the response is computed at the frequencies
k*2*pi/period for k = 0 up to the Nyquist frequency.

Examples Compare an empirical transfer function estimate to a smoothed spectral
estimate.

ge = etfe(z);
gs = spa(z);
bode(ge,gs)

y t() G q()u t() v t()+=

G eiω()

etfe

4-64

Generate a periodic input, simulate a system with it, and compare the
frequency response of the estimated model with the true system at the excited
frequency points.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);
me = etfe([y u])
bode(me,'b*',m)

Algorithm The empirical transfer function estimate is computed as the ratio of the output
Fourier transform to the input Fourier transform, using fft. The periodogram
is computed as the normalized absolute square of the Fourier transform of the
time series.

You obtain the smoothed versions (M less than the length of z) by applying a
Hamming window to the output fast Fourier transform (FFT) times the
conjugate of the input FFT, and to the absolute square of the input FFT,
respectively, and subsequently forming the ratio of the results. The length of
this Hamming window is equal to the number of data points in z divided by M,
plus one.

See Also spa, spafdr

fcat

4-65

4fcatPurpose Concatenate frequency-domain signals in idfrd and iddata objects

Syntax Mc = fcat(M1,M2,...Mn)

Description M1, M2, etc., are all idfrd objects or iddata frequency-domain objects.

Mc is the corresponding object obtained by concatenation of the responses at all
the frequencies in Mk.

Note that for iddata objects, this is the same as vertical concatenation
(vertcat).

Mc = [M1;M2;..;Mn].

See Also fselect, iddata, idfrd

feedback

4-66

4feedbackPurpose Investigate feedback presence in iddata sets

Syntax [fbck,fbck0,nudir] = feedback(Data)

Description Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry is a
measure of feedback from output ky to input ku. The value is a probability P in
percent. Its interpretation is that if the hypothesis that there is no feedback
from output ky to input ku were tested at the level P, it would have been
rejected. An intuitive but technically incorrect way of thinking about this is to
see P as “the probability of feedback.” Often only values above 90% are taken
as indications of feedback. When fbck is calculated, direct dependence at lag
zero between u(t) and y(t) is not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and y(t) is
viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a direct
effect on some outputs, that is, no delay from input to output.

See Also advice. idmodel/feedback

ffplot

4-67

4ffplotPurpose Plot frequency functions and spectra

Syntax ffplot(m)
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)
ffplot(m1,m2,m3,...,w)
ffplot(m1,'PlotStyle1',m2,'PlotStyle2',...)
ffplot(m1,m2,m3,..'sd',sd,'mode',mode,'ap',ap)

Description This function has exactly the same syntax as bode. The only difference is that
it gives graphs with linear frequency scales and Hz as the frequency unit.

See Also bode, nyquist

fft/ifft

4-68

4 fft/ifftPurpose Transform iddata objects between time and frequency domains

Syntax Datf = fft(Data), dat = ifft(Datf)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

Description If Data is a time-domain iddata object with real-valued signals and with
constant sampling interval Ts, Datf is returned as a frequency-domain iddata
object with the frequency values equally distributed from frequency 0 to the
Nyquist frequency. Whether the Nyquist frequency actually is included or not
depends on the signal length (even or odd). Note that the FFTs are normalized
by dividing each transform by the square root of the signal length. That is in
order to preserve the signal power and noise level.

In the default case, the length of the transformation is determined by the signal
length. A second argument N will force FFT transformations of length N,
padding with zeros if the signals in Data are shorter and truncating otherwise.
Thus the number of frequencies in the real signal case will be N/2 or (N+1)/2.
If Data contains several experiments, N can be a row vector of corresponding
length.

For real signals, the default is that Datf only contains nonnegative frequencies.
For complex-valued signals, negative frequencies are also included. To enforce
negative frequencies in the real case, add a last argument, 'Complex'.

ifft similarily transforms a frequency-domain iddata object to the time
domain. It requires the frequencies on Datf to be equally spaced from
frequency 0 to the Nyquist frequency. More exactly this means that if there are
N frequencies in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and
F = pi/Ts*(1-1/N) if N is even.

See Also iddata, iddata/complex, iddata/realdata

frd

4-69

4frdPurpose Convert idfrd objects to freqency-response-data LTI models of Control System
Toolbox

Syntax sys = frd(mod)

Description mod is an idfrd object. sys is returned as an frd object.

The fields Frequency, ResponseData, Units, Ts, InputDelay, InputName,
OutputName and Notes in mod are transferred to sys. The remaing fields
(SpectrumData, CovarianceData and NoiseCovariance) are ignored. The
command therefore cannot be applied to a time-series idfrd model object.

See Also ss, tf, zpk

freqresp

4-70

4freqrespPurpose Compute frequency function for model

Syntax H = freqresp(m)
[H,w,covH] = freqresp(m,w)

Description m is any idmodel or idfrd object.

H = freqresp(m,w) computes the frequency response H of the idmodel model m
at the frequencies specified by the vector w. These frequencies should be real
and in rad/s.

If m has ny outputs and nu inputs, and w contains Nw frequencies, the output H
is an ny-by-nu-by-Nw array such that H(:,:,k) gives the complex-valued
response at the frequency w(k).

For a SISO model, H(:) to obtain a vector of the frequency response.

If w is not specified, a default choice is made based on the dynamics of the
model.

Output Arguments
[H,w,covH] = freqresp(M,w)

also returns the frequencies w and the covariance covH of the response. covH is
a 5-D array where covH(ky,ku,k,:,:) is the 2-by-2 covariance matrix of the
response from input ku to output ky at frequency w(k). The 1,1 element is the
variance of the real part, the 2,2 element is the variance of the imaginary part,
and the 1,2 and 2,1 elements are the covariance between the real and
imaginary parts. squeeze(covH(ky,ku,k,:,:)) gives the covariance matrix of
the corresponding response.

If m is a time series (no input channels), H is returned as the (power) spectrum
of the outputs, an ny-by-ny-by-Nw array. Hence H(:,:,k) is the spectrum
matrix at frequency w(k). The element H(k1,k2,k) is the cross spectrum
between outputs k1 and k2 at frequency w(k). When k1 = k2, this is the
real-valued power spectrum of output k1.

covH is then the covariance of the estimated spectrum H, so that covH(k1,k1,k)
is the variance of the power spectrum estimate of output k1 at frequency W(k).
No information about the variance of the cross spectra is normally given; that
is, covH(k1,k2,k) = 0 for k1 is not equal to k2.)

freqresp

4-71

If the model m is not a time series, use freqresp(m('n')) to obtain the
spectrum information of the noise (output disturbance) signals.

Note that idfrd computes the same information as freqresp, and stores it in
the idfrd object.

See Also bode, idfrd, nyquist

fpe

4-72

4fpePurpose Akaike Final Prediction Error for estimated model

Syntax fp = fpe(Model1,Model2,Model3,...)

Description Model is any estimated idmodel (idarx, idgrey, idpoly, idproc, idss).

fp is returned as a row vector containing the values of the Akaike Final
Prediction Error (FPE) for the different models. This is defined as

where V is the loss function, d is the number of estimated parameters, and N
is the number of estimation data.

Note that it is technically possible for FPE to become negative, if the number
of estimated parameters exceeds the number of data (which could happen for
models with many outputs). This is an artifact where the assumption behind
the derivation that d/N is small is not valid. In such a case, it is better to use
AIC.

References Sections 7.4 and 16.4 in Ljung (1999).

See Also EstimationInfo, aic

FPE V1 d N⁄+
1 d N⁄–
----------------------=

fselect

4-73

4fselectPurpose Select frequencies from idfrd object

Syntax idfm = fselect(idf,index)
idfm = fselect(idf,Fmin,Fmax)

Description idf is any idfrd object. index is a row vector of frequency indices, so that idfm
is the idfrd object that contains the response at frequencies
idf.Frequency(Index).

If Fmin and Fmax are specified, idfm contains responses at frequencies between
Fmin and Fmax.

Note that the operation is the same as dat(index) for an iddata object.

Examples Select every fifth frequency:

idfm = fselect(idf,5:5:100)

Select the response in the third quadrant:

ph = angle(squeeze(idf.response));
idfm = fselect(idf,find(ph>-pi & ph <-pi/2))

See Also fcat

get

4-74

4getPurpose Query idmodel, idfrd, and iddata properties

Syntax Value = get(m,'PropertyName')
get(m)
Struct = get(m)

Description value = get(m,'PropertyName') returns the current value of the property
PropertyName of the iddata set or idfrd, or idmodel (idgrey, idarx, idpoly,
idss) m. The string 'PropertyName' can be the full property name (for example,
'SSParameterization') or any unambiguous case-insensitive abbreviation
(for example, 'ss'). You can specify any generic idmodel property or any
property specific to idgrey, idarx, etc. (see iddata, idmodel, idgrey, idarx,
idpoly, idss, and Algorithm Properties for lists of properties that can be
accessed directly).

Struct = get(m) converts the object m into a standard MATLAB structure with
the property names as field names and the property values as field values.

Without a left-hand argument

get(m)

displays all properties of m and their values.

Remarks An alternative to the syntax

Value = get(m,'PropertyName')

is the structure-like referencing

Value = m.PropertyName

See Also arxdata, iddata, idfrd, idmodel, polydata, set, ssdata, tfdata, zpkdata,
Algorithm Properties, EstimationInfo

getexp

4-75

4getexpPurpose Retrieve experiment(s) from multiple-experiment iddata objects

Syntax d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description data is an iddata object that contains several experiments. d1 is another
iddata object containing the indicated experiment(s). The reference can either
be by ExperimentNumber, as in d1 = getexp(data,3) or
d1 = getexp(data,[4 2]); or by ExperimentName, as in
d1 = getexp(data,'Period1') or
d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment data
objects.

You can also retrieve the experiments using a fourth subscript, as in
d1 = data(:,:,:,ExperimentNumber). Type help iddata/subsref for details
on this.

idarx

4-76

4idarxPurpose Construct idarx model from ARX polynomials

Syntax m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

Description idarx creates an object containing parameters that describe the general
multiinput, multioutput model structure of ARX type.

Here and are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the vector

, and nu is the number of inputs.) See “Multivariable ARX Models: the
idarx Model” on page 3-43.

The arguments A and B are 3-D arrays that contain the A matrices and the B
matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in the model
are defined by setting the corresponding leading entries in B to zero. For a
multivariate time series take B = [].

The optional property NoiseVariance sets the covariance matrix of the driving
noise source in the model above. The default value is the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time models
(Ts = 0) are not supported.

The use of idarx is twofold. You can use it to create models that are simulated
(using sim) or analyzed (using bode, pzmap, etc.). You can also use it to define
initial value models that are further adjusted to data (using arx). The free
parameters in the structure are consistent with the structure of A and B; that

y t() A1y t 1–() A2y t 2–() … Anay t na–()+ + + + =

B0u t() B1u t 1–() … Bnbu t nb–() e t()+ + + +

Ak Bk

y t()

e t()

idarx

4-77

is, leading zeros in the rows of B are regarded as fixed delays, and trailing zeros
in A and B are regarded as a definition of lower-order polynomials. These zeros
are fixed, while all other parameters are free.

For a model with one output, ARX models can be described both as idarx and
idpoly models. The internal representation is different, however.

idarx
Properties

• A, B: The A and B polynomials as 3-D arrays, described above

• dA, dB: The standard deviations of A and B. Same format as A and B. Cannot
be set.

• na, nb, nk: The orders and delays of the model. na is an ny-by-ny matrix whose
i-j entry is the order of the polynomial corresponding to the i-j entry of A.
Similarly nb is an ny-by-nu matrix with the orders of B. nk is also an ny-by-nu
matrix, whose i-j entry is the delay from input j to output i, that is, the
number of leading zeros in the i-j entry of B.

• InitialState: This describes how the initial state (initial values in filtering,
etc.) should be handled. For time-domain applications, this is typically
handled by starting the filtering when all data are available. For
frequency-domain data, though, this requires more attention. See “Initial
States for Frequency Domain Data” on page 3-101. The possible values of
InitialState are 'zero', 'estimate', and 'auto' (which makes a
data-dependent choice between zero and estimate).

In addition to these properties, idarx objects also have all the properties of the
idmodel object. See idmodel, Algorithm Properties, and EstimationInfo.

Note that you can set and retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values, and
they are case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idarx.

idarx

4-78

Examples Simulate a second-order ARX model with one input and two outputs, and then
estimate a model using the simulated data.

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

See Also arx, arxdata, idmodel, idpoly

iddata

4-79

4iddataPurpose Package input-output data into iddata object

Syntax data = iddata(y,u)
data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)
data = iddata(y,u,'Frequency',W)
data = iddata(idfrd_object)

Description iddata is the basic object for dealing with signals in the toolbox. It is used by
most of the commands. It can handle both time- and frequency-domain data.
Most estimation and simulation commands can be applied to iddata objects in
a transparent manner, regardless of the signal domain.

Basic Use
Let y be a column vector or an N-by-ny matrix. The columns of y correspond to
the different output channels. Similarly, u is a column vector or an N-by-nu
matrix containing the signals of the input channels. For time-domain signals,

data = iddata(y,u,Ts)

creates an iddata object containing these output and input channels. Ts is the
sampling interval. This construction is sufficient for most purposes. For
frequency-domain data, the vector of frequencies W (length N) at which the
signals are defined must be supplied.

data = iddata(y,u,'Frequency',W)

The data is then plotted by plot(data) (see plot), and portions of the data
record are selected, as in ze = data(1:300) or zv = data(501:700).

An idfrd object can be transformed to a frequency-domain iddata object by

data = iddata(idfrd_object)

See “Transformations” on page 4-85.

The signals in the output channels are retrieved by data.OutputData, or for
short, data.y. Similarly the input signals are obtained by data.InputData or
data.u.

For a time series (no input channels), use data = iddata(y), or let u = [].

An iddata object can also contain just an input, if you let y = [].

iddata

4-80

The sampling interval can be changed by set(data,'Ts',0.3) or, more
simply, by data.Ts = 0.3.

The input and output channels are given default names like 'y1', 'y2',
'u1','u2', etc. You can set the channel names by

set(data,'InputName',{'Voltage','Current'},'OutputName','Tempera
ture')

(two inputs and one output in this example), and these names will then follow
the object and appear in all plots. The names are also inherited by models that
are estimated from the data.

Similarly, you can specify channel units using the properties 'OutputUnit'
and 'InputUnit'. These units, when specified, are used in plots.

The time points associated with the time-domain data samples are determined
by the sampling interval Ts and the time of the first sample, Tstart.

data.Tstart = 24

The actual time point values are given by the property 'SamplingInstants' as
in

plot(data.sa,data.u)

for a plot of the input with correct time points. Autofill is used for all properties,
and they are case insensitive. For frequency-domain data, the property
'Frequency' picks out the frequency values.

plot(data.fre,abs(data.u))

Manipulating Channels
An easy way to set and retrieve channel properties is to use subscripting. The
subscripts are defined as

data(Samples,Outputs,Inputs)

so dat(:,3,:) is the data object obtained from dat by keeping all input
channels, but only output channel 3. (Trailing “:”s can be omitted, so
dat(:,3,:) = dat(:,3).)

The channels can also be retrieved by their names, so that

 dat(:,{'speed','flow'},[])

iddata

4-81

is the data object where the indicated output channels have been selected and
no input channels are selected.

Moreover,

dat1(101:200,[3 4],[1 3]) = dat2(1001:1100,[1 2],[6 7])

will change samples 101 to 200 of output channels 3 and 4 and input channels
1 and 3 in the iddata object dat1 to the indicated values from iddata object
dat2. The names and units of these channels are also changed accordingly.

To add new channels, use horizontal concatenation of iddata objects.

dat =[dat1, dat2];

(see “Horizontal Concatenation” on page 4-85) or add the data record directly.
Thus

dat.u(:,5) = U

adds a fifth input to dat.

Nonequal Sampling for Time-Domain Data
The property 'SamplingInstants' gives the sampling instants of the data
points. It can always be retrieved by get(dat,'SamplingInstants') (or dat.s)
and is then computed from dat.Ts and dat.Tstart. 'SamplingInstants' can
also be set to an arbitrary vector of the same length as the data, so that
nonequal sampling can be handled. Ts is then automatically set to []. Most of
the estimation routines, though, do not handle unequally sampled data.

Multiple Experiments
The iddata object can also store data from separate experiments. The property
'ExperimentName' is used to separate the experiments. The number of data as
well as the sampling properties can vary from experiment to experiment, but
the input and output channels must be the same. (Use NaN to fill possibly
unmeasured channels in certain experiments.) The data records will be cell
arrays, where the cells contain data from each experiment.

You can define multiple experiments directly by letting the 'y' and 'u'
properties, as well as 'Ts' and 'Tstart', be cell arrays. (For frequency-domain
data, the frequency vector will be a cell array.)

iddata

4-82

It is normally easier to create multiple-experiment data by merging
experiments, as in

dat = merge(dat1,dat2)

See the reference page for merge (data). Storing multiple experiments as one
iddata object can be very useful to handle experimental data that has been
collected on different occasions, or when a data set has been split up to remove
“bad” portions of the data. All the toolbox’s routines accept
multiple-experiment data.

Experiments can be retrieved by the command getexp. They can also be
retrieved by subscripting with a fourth index: dat(:,:,:,3) is experiment #3,
and dat(:,:,:,{'Day1','Day4'}) retrieves the two experiments with the
indicated names.

The subscripting can be combined: dat(1:100,[2,3],[4:8],3) gives the 100
first samples of output channels 2 and 3 and input channels 4 to 8 of
experiment #3. It can also be used for subassignment:

dat(:,:,:,'Run4') = dat2

which adds the data in dat2 as a new experiment with name 'Run4'. See
iddemo #8 for an illustration of how multiple experiments can be used.

iddata
Properties

In the list below, N denotes the number of samples of the signals, ny the number
of output channels, nu the number of input channels, and Ne the number of
experiments.

• Domain: Assumes the value 'Time' or 'Frequency' and denotes whether the
data are time-domain or frequency-domain data.

• Name: An optional name for the data set. An arbitrary string.

• OutputData, InputData: The data matrices y and u. In the single-experiment
case, y is an N-by-ny matrix and u is an N-by-nu matrix. For multiple
experiments, y and u are 1-by-Ne cell arrays, with each cell containing the
data for the different experiments.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1 containing
the names of the output and input channels. If not specified, default names
{'y1';'y2';...} and {'u1';'u2';...} are given.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1 containing
the units of the output and input channels.

iddata

4-83

• TimeUnit: The unit for the sampling instants.

• Ts: Sampling interval. A scalar. For multiple-experiment data, Ts is a
1-by-Ne cell array, with each cell containing the sampling interval of the
corresponding experiment. For nonequally sampled data, Ts = []. For
time-domain signals, Ts has to be positive. For frequency-domain data,
Ts = 0 indicates continuous-time data; that is, the inputs and outputs are
interpreted as continuous-time Fourier transforms of the signals, given at
the frequencies in the frequency vector. Note that Ts is essential also for
frequency-domain data, for proper interpretation of how the Fourier
transforms were computed: They are interpreted as discrete-time Fourier
transforms (DTFT) with the indicated sampling interval.

• Tstart: (For time-domain data only.) The starting time of the data record. A
scalar. For multiple-experiment data, Tstart is a 1-by-Ne cell array, with
each cell containing the starting time for the corresponding experiment.

• SamplingInstants: (For time-domain data only.) The time values of the
sample points. An N-by-1 vector. For multiple-experiment data,
SamplingInstants is a 1-by-Ne cell array, with each cell containing the
sampling instants of the corresponding experiment. For equally sampled
data, SamplingInstants is generated from Ts and Tstart.

• Frequency: (For frequency-domain data only.) The vector of frequencies at
which the signals’ transforms are defined. This is a column vector the length
of the number of values of OutputData and InputData. For
multiple-experiment data, Frequency is a cell array containing the
frequencies for each experiment.

• Units: (For frequency-domain data only). The unit in which the frequencies
are measured: rad/s or Hz. For multiple-experiment data, units is a cell
array denoting the unit for each experiment.

• Period: The period of the input. A nu-by-1 vector, where the kth entry
contains the period of the kth input. Period = inf means nonperiodic data.
For multiple-experiment data, Period is a 1-by-Ne cell array with each cell
containing the period(s) for the input of the corresponding experiment.

• InterSample: Describes the intersample behavior of the input channels. An
nu-by-1 cell array where the (k,1) element is 'zoh', 'foh', or 'bl', denoting
that input number k is piecewise constant, piecewise linear, or band limited.
For multiple-experiment data, InterSample is an nu-by-Ne cell array.

• ExperimentName: A string containing the name of the experiment. For
multiple-experiment data, ExperimentName is a 1-by-Ne cell array with each

iddata

4-84

cell containing the name of the corresponding experiment. It can be freely
set, and is given names {'Exp1', 'Exp2',...} by default.

• Notes: An arbitrary field to store extra information and notes about the
object.

• UserData: An arbitrary field for any possible use.

Note that you can set or retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values, and
they are case insensitive. 'y' and 'u' can be used as short for 'OutputData'
and 'InputData'. 'y' and 'u' can also replace 'Output' and 'Input' in the
other properties.

data.y=randn(100,2)
data.una = 'Voltage'
set(data,'tim','minute')
p = data.per

For a complete list of property values, use get(data). To see possible value
assignments, use set(data).

Subreferencing The samples, outputs and input channels can be referenced according to

data(samples,outputs,inputs)

Use a colon (:) to denote all samples/channels and the empty matrix ([]) to
denote no samples/channels. For frequency-domain data, samples corresponds
to the frequency vector indices, so that

dat2 = datf([5:30])

picks out the data values at frequencies W(5:30), where W = datf.Frequency.

The channels can be referenced by number or by name. For several names, you
must use a cell array.

dat2 = dat(:,'y3',{'u1','u4'})
dat2 = dat(:,3,[1 4])

Logical expressions will also work.

dat3 = dat2(dat2.sa>1.27&dat2.sa<9.3)

will select the samples with time marks between 1.27 and 9.3.

iddata

4-85

Subreferencing with a fourth argument refers to the experiment.

data(samples,outputs,inputs,Experiment)

Any subreferenced variable can also be assigned.

data(:,:,:,'Exp3'.y = flow(1:700,:)

data(1:10,1,1) = dat1(101:110,2,3)

Horizontal
Concatenation

dat = [dat1,dat2,...,datN]creates an iddata object dat, consisting of the
input and output channels in dat1,... datN. Default channel names ('u1',
'u2', 'y1', 'y2', etc.) are changed so that overlaps in names are avoided, and
the new channels are added.

If datk contains channels with user-specified names that are already present
in the channels of Datj, j<k, these new channels are ignored.

Vertical
Concatenation

dat = [dat1;dat2;... ;datN] creates an iddata object dat whose signals are
obtained by stacking those of datk on top of each other. That is,

dat.OutputData = [dat1.Ouputdata;dat2.OutputData; ...
datN.OutputData]

and similarly for the inputs. The datk objects must all have the same number
of channels and experiments.

Transforma-
tions

The command fft transforms a time-domain data set to frequency domain.
The command ifft transforms a frequency-domain data set (with certain
requirements on the frequency vector) to time domain.

An idfrd (frequency-response data) object can be transformed to a
frequency-domain iddata object by

datf = iddata(idfrdobj)

The command

datf = iddata(idfrdobj,'me')

transforms the idfrd object to a multiple-experiment data set datf where each
experiment corresponds to each of the inputs in idfrdobj. By default this
transformation strips away frequencies where the response is inf or NaN. To
keep these, use datf = iddata(idfrdobj,'inf'). Type help idfrd/iddata.

iddata

4-86

Dealing with
Complex-
Valued Data

If Dat is complex valued, abs(Dat), real(Dat), imag(Dat), phase(Dat),
angle(Dat), and (Dat) create iddata objects where each of the signals has
been subjected to the indicated operation.

isreal(Dat) returns 1 if Dat contains only real signals, while realdata(Dat)
returns 1 if the underlying signal is real. Thus a frequency-domain signal Datf
obtained by fft from a real-valued time-domain signal will have

isreal(Datf) = 0 and realdata(Datf) = 1

For a realdata frequency-domain set (which only stores the values for
nonnegative frequencies), the command

datc = complex(dat)

adds signal values for negative frequencies (by complex conjugation).

Online Help
Functions

See help iddata, idprops iddata, help iddata/subsref, help
iddata/subsasgn, help iddata/horzcat, and help iddata/vertcat.

See Also plot (iddata), size, fft, ifft, detrend, idfilt

ident

4-87

4identPurpose Open System Identification Toolbox GUI

Syntax ident
ident(session,directory)

Description ident by itself opens the main interface window, or brings it forward if it is
already open.

session is the name of a previous session with the graphical user interface,
and typically has extension.sid. The directory argument is the complete path
for the location of this file. If the session file is on the MATLABPATH, directory
can be omitted.

When the session is specified, the interface will open with this session active.
Typing ident(session,directory) on the MATLAB command line, when the
interface is active, will load and open the session in question.

For more information about the graphical user interface, see Chapter 2, “The
Graphical User Interface.”

Examples ident('iddata1.sid')
ident('mydata.sid','\matlab\data\cdplayer\')

See Also midprefs

idfilt

4-88

4idfiltPurpose Filter data using user-defined passbands, general filters, or Butterworth filters

Syntax Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description Z is the data, defined as an iddata object. Zf contains the filtered data as an
iddata object. The filter can be defined in three ways:

• As an explicit system that defines the filter,

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO idmodel or LTI model object. Alternatively the filter can
be defined as a cell array {A,B,C,D} of SISO state-space matrices or as a cell
array {num,den} of numerator/denominator filter coefficients.

• As a vector or matrix that defines one or several passbands,

filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A filter is
constructed that gives the union of these passbands. For time-domain data,
it is computed as cascaded Butterworth filters or order NF. The default value
of NF is 5.

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

• For frequency-domain data, only the frequency response of the filter can be
specified:

filter = Wf

Here Wf is a vector of possibly complex values that define the filter’s
frequency response, so that the inputs and outputs at frequency
Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector of
length = number of frequencies in Z. If the data object has several
experiments, Wf is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain as causal
filtering as default. This corresponds to a last argument causality =

idfilt

4-89

'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is
used for the filtering (corresponding to filtfilt in the Signal Processing
Toolbox).

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband, this gives ideal,
zero-phase filtering (“brickwall filters”). Frequencies that have been assigned
zero weight by the filter (outside the passband, or via the frequency response)
are removed from the iddata object Zf.

It is common practice in identification to select a frequency band where the fit
between model and data is concentrated. Often this corresponds to bandpass
filtering with a passband over the interesting breakpoints in a Bode diagram.
For identification where a disturbance model is also estimated, it is better to
achieve the desired estimation result by using the property 'Focus' (see
Algorithm Properties) than just to prefilter the data. The proper values for
'Focus' are the same as the argument filter in idfilt.

Algorithm The Butterworth filter is the same as butter in the Signal Processing Toolbox.
Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

References Ljung (1999), Chapter 14.

See Also Algorithm Properties, idresamp, detrend

idfrd

4-90

4idfrdPurpose Construct idfrd object from idmodel object or functions

Syntax h = idfrd(Response,Freqs,Ts)
h = idfrd(Response,Freqs,Ts,'CovarianceData',Covariance, ...

'SpectrumData',Spec,'NoiseCovariance',Speccov,'property1', ...
Value1,'PropertyN',ValueN)

h = idfrd(mod)
h = idfrd(mod,Freqs)

Description idfrd creates the idfrd model object.

For a model

stores the transfer function estimate G (see (Equation 3-4) in Chapter 3,
“Tutorial,”)

as well as the spectrum of the additive noise () at the output

where is the estimated variance of e(t), and T is the sampling interval.

Creating idfrd from Given Responses
Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being the number
of outputs, nu the number of inputs, and Nf the number of frequencies (that is,
the length of Freqs). Response(ky,ku,kf) is thus the complex-valued
frequency response from input ku to output ky at frequency =Freqs(kf).
When defining the response of a SISO system, Response can be given as a
vector.

Freqs is a column vector of length Nf containing the frequencies of the
response.

Ts is the sampling interval. T = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency response.
It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is such that

y t() G q()u t() H q()e t()+=

G eiω()

Φv

Φv ω() λT H eiωT()
2

=

λ

ω

idfrd

4-91

Covariance(ky,ku,kf,:,:) is the 2-by-2 covariance matrix of the response
Response(ky,ku,kf). The 1-1 element is the variance of the real part, the 2-2
element is the variance of the imaginary part, and the 1-2 and 2-1 elements are
the covariance between the real and imaginary parts.
squeeze(Covariance(ky,ku,kf,:,:)) thus gives the covariance matrix of the
corresponding response.

The information about spectrum is optional. The format is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that spec(ky1,ky2,kf)
is the cross spectrum between the noise at output ky1 and the noise at output
ky2, at frequency Freqs(kf). When ky1 = ky2 the (power) spectrum of the
noise at output ky1 is thus obtained. For a single-output model, spec can be
given as a vector.

speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that
speccov(ky1,ky1,kf) is the variance of the corresponding power spectrum.
Normally, no information is included about the covariance of the nondiagonal
spectrum elements.

If only SpectrumData is to be packaged in the idfrd object, set Response = [].

Creating idfrd from a Given Model
idfrd can also be computed from a given model mod (defined as any idmodel
object).

If the frequencies Freqs are not specified, a default choice is made based on the
dynamics of the model mod.

If mod has InputDelay different from zero, these are appended as phase lags,
and h will then have an InputDelay of 0.

The estimated covariances are computed using the Gauss approximation
formula from the uncertainty information in mod. For models with complicated
parameter dependencies, numerical differentiation is applied. The step sizes
for the numerical derivatives are determined by nuderst.

Frequency responses for submodels can be obtained by the standard
subreferencing, h = idfrd(m(2,3)). See idmodel. In particular,
h = idfrf(m('measured')) gives an h that just contains the ResponseData
(G) and no spectra. Also h = idfrd(m('noise')) gives an h that just contains
SpectrumData.

idfrd

4-92

The idfrd models can be graphed with bode, ffplot, and nyquist, which all
accept mixtures of idmodel and idfrd models as arguments. Note that spa,
spafdr, and etfe return their estimation results as idfrd objects.

idfrd
Properties

• ResponseData: 3-D array of the complex-valued frequency response as
described above. For SISO systems use Response(1,1,:) to obtain a vector
of the response data.

• Frequency: Column vector containing the frequencies aT which the
responses are defined.

• CovarianceData: 5-D array of the covariance matrices of the response data
as described above.

• SpectrumData: 3-D array containing power spectra and cross spectra of the
output disturbances (noise) of the system.

• NoiseCovariance: 3-D array containing the variances of the power spectra,
as explained above.

• Units: Unit of the frequency vector. Can assume the values 'rad/s' and
'Hz'.

• Ts: Scalar denoting the sampling interval of the model whose frequency
response is stored. 'Ts' = 0 means a continuous-time model.

• Name: An optional name for the object.

• InputName: String or cell array containing the names of the input channels.
It has as many entries as there are input channels.

• OutputName: Correspondingly for the output channels.

• InputUnit: Units in which the input channels are measured. It has the same
format as 'InputName'.

• OutputUnit: Correspondingly for the output channels.

• InputDelay: Row vector of length equal to the number of input channels.
Contains the delays from the input channels. These should thus be appended
as phase lags when the response is calculated. This is done automatically by
freqresp, bode, ffplot, and nyquist. Note that if the idfrd is calculated
from an idmodel, possible input delays in that model are converted to phase
lags, and the InputDelay of the idfrd model is set to zero.

• Notes: An arbitrary field to store extra information and notes about the
object.

• UserData: An arbitrary field for any possible use.

idfrd

4-93

• EstimationInfo: Structure that contains information about the estimation
process that is behind the frequency data. It contains the following fields (see
also the reference page for EstimationInfo).

- Status: Gives the status of the model, for example, 'Not estimated'.

- Method: The identification routine that created the model.

- WindowSize: If the model was estimated by spa, spafdr, or etfe, the size
of window (input argument M, the resolution parameter) that was used.
This is scalar or a vector.

- DataName: Name of the data set from which the model was estimated.

- DataLength: Length of this data set.

Note that you can set or retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values, and
these are case insensitive:

h.ts = 0
loglog(h.fre,squeeze(h.spe(2,2,:)))

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idfrd.

Subreferencing The different channels of the idfrd are retrieved by subreferencing.

h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output channel
2, and, if applicable, the output spectrum data for output channel 2. The
channels can also be referred to by their names, as in
h('power',{'voltage',''speed'}).

h('m')

contains the information for measured inputs only, that is, just ResponseData,
while

h('n')

('n' for 'noise') just contains SpectrumData.

Horizontal
Concatenation

Adding input channels,

h = [h1,h2,...,hN]

idfrd

4-94

creates an idfrd model h, with ResponseData containing all the input channels
in h1,...,hN. The output channels of hk must be the same, as well as the
frequency vectors. SpectrumData is ignored.

Vertical
Concatenation

Adding output channels,

h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output
channels in h1, h2,...,hN. The input channels of hk must all be the same, as
well as the frequency vectors. SpectrumData is also appended for the new
outputs. The cross spectrum between output channels is then set to zero.

Converting to
iddata

You can convert an idfrd object to a frequency-domain iddata object by

Data = iddata(Idfrdmodel)

See iddata.

Examples Compare the results from spectral analysis and an ARMAX model.

m = armax(z,[2 2 2 1]);
g = spa(z)
g = spafdr(z,[],{0,10})
bode(g,m)

Compute separate idfrd models, one containing the frequency function and
the other the noise spectrum.

g = idfrd(m('m'))
phi = idfrd(m('n'))

See Also bode, etfe, freqresp, nyquist, spa

idgrey

4-95

4idgreyPurpose Construct grey-box linear model using user-defined M-file

Syntax m = idgrey(MfileName,ParameterVector,CDmfile)
m = idgrey(MfileName,ParameterVector,CDmfile,FileArgument,Ts,...
'Property1',Value1,...,'PropertyN',ValueN)

Description The function idgrey is used to create arbitrarily parameterized state-space
models as idgrey objects.

MfileName is the name of an M-file that defines how the state-space matrices
depend on the parameters to be estimated. The format of this M-file is given by

[A,B,C,D,K,X0] = mymfile(pars,Tsm,Auxarg)

and is further discussed below.

ParameterVector is a column vector of the nominal/initial parameters. Its
length must be equal to the number of free parameters in the model (that is,
the argument pars in the example below).

The argument CDmfile describes how the user-written M-file handles
continuous and discrete-time models. It takes the following values:

• CDmfile = 'cd': The M-file returns the continuous-time state-space
matrices when called with the argument Tsm = 0. When called with a value
Tsm > 0, the M-file returns the discrete-time state-space matrices, obtained
by sampling the continuous-time system with sampling interval Tsm. The
M-file must consequently in this case include the sampling procedure.

• CDmfile = 'c'. The M-file always returns the continuous-time state-space
matrices, no matter the value of Tsm. In this case the toolbox’s estimation
routines will provide the sampling when you are fitting the model to
discrete-time data.

• CDmfile='d'. The M-file always returns discrete-time state-space matrices
that may or may not depend on Tsm.

The argument FileArgument corresponds to the auxiliary argument Auxarg in
the user-written M-file. It can be used to handle several variants of the model
structure, without your having to edit the M-file. If it is not used, enter
FileArgument = []. (Default.)

idgrey

4-96

Ts denotes the sampling interval of the model. Its default value is Ts = 0, that
is, a continuous-time model.

The idgrey object is a child of idmodel. Therefore any idmodel properties can
be set as property name/property value pairs in the idgrey command. They can
also be set by the command set, or by subassignment, as in

m.InputName = {'speed','voltage'}
m.FileArgument = 0.23

There are also two properties, DisturbanceModel and InitialState, that can
be used to affect the parameterizations of K and X0, thus overriding the
outputs from the M-file.

idgrey
Properties

• MfileName: Name of the user-written M-file.

• CDmfile: How this file handles continuous and discrete-time models
depending on its second argument, T.

- CDmfile = 'cd' means that the M-file returns the continuous-time
state-space model matrices when the argument T = 0, and the
discrete-time model, obtained by sampling with sampling interval T, when
T > 0.

- CDmfile= 'c' means that the M-file always returns continuous-time
model matrices, no matter the value of T.

- CDmfile = 'd' means that the M-file always returns discrete-time model
matrices that may or may not depend on the value of T.

• FileArgument: Possible extra input arguments to the user-written M-file.

• DisturbanceModel: Affects the parameterization of the K matrix. It can
assume the following values:

- 'Model': This is the default. It means that the K matrix obtained from the
user-written M-file is used.

- 'Estimate': The K matrix is treated as unknown and all its elements are
estimated as free parameters.

- 'Fixed': The K matrix is fixed to a given value.

- 'None': The K matrix is fixed to zero, thus producing an output-error
model.

Note that in the three last cases the output K from the user-written M-file is
ignored. The estimated/fixed value is stored internally and does not change
when the model is sampled, resampled, or converted to continuous time.

idgrey

4-97

Note also that this estimated value is tailored only to the sampling interval
of the data.

• InitialState: Affects the parameterization of the X0 vector. It can assume
the following values:

- 'Model': This is the default. It means that the X0 vector is obtained from
the user-written M-file.

- 'Estimate': The X0 matrix is treated as unknown and all its elements are
estimated as free parameters.

- 'Fixed': The X0 vector is fixed to a given value.

- 'Backcast': The X0 vector is estimated using a backcast operation
analogous to the idss case.

- 'Auto': Makes a data-dependent choice among 'Estimate', 'Backcast',
and 'Model'.

• A, B, C, D, K, and X0: The state-space matrices. For idgrey models, only 'K'
and 'X0' can be set; the others can only be retrieved. The set 'K' and 'X0'
are relevant only when DisturbanceModel/InitialState are Estimate or
Fixed.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the
state-space matrices. These cannot be set, only retrieved.

In addition, any idgrey object also has all the properties of idmodel. See
Algorithm Properties and the reference page for idmodel.

Note that you can set or retrieve all properties using either the set and get
commands or subscripts. Autofill applies to all properties and values, and they
are case insensitive.

m.fi = 10;
set(m,'search','gn')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops and idgrey.

idgrey

4-98

M-File Details The model structure corresponds to the general linear state-space structure

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The matrices in this time-discrete model can be parameterized in an arbitrary
way by the vector . Write the format for the M-file as follows:

[A,B,C,D,K,x0] = mymfile(pars,T,Auxarg)

Here the vector pars contains the parameters , and the output arguments A,
B, C, D, K, and x0 are the matrices in the model description that correspond to
this value of the parameters and this value of the sampling interval T.

T is the sampling interval, and Auxarg is any variable of auxiliary quantities
with which you want to work. (In that way you can change certain constants
and other aspects in the model structure without having to edit the M-file.)
Note that the two arguments T and Auxarg must be included in the function
head of the M-file, even if they are not used within the M-file.

“State-Space Models with Coupled Parameters: the idgrey Model” on page 3-51
contains several examples of typical M-files that define model structures.

A comment about CDmfile: If a continuous-time model is sought, it is easiest to
let the M-file deliver just the continuous-time model, that is, have
CDmfile = 'c' and rely upon the toolbox’s routines for the proper sampling.
Similarly, if the underlying parameterization is indeed discrete time, it is
natural to deliver the discrete-time model matrices and let CDmfile = 'd'. If
the underlying parameterization is continuous, but you prefer for some reason
to do your own sampling inside the M-file in accordance with the value of T,
then let your M-file deliver the continuous-time model when called with T = 0,
that is, the alternative CMmfile = 'cd'. This avoids sampling and then
transforming back (using d2c) to find the continuous-time model.

Examples Use the M-file mynoise given in “Parameterized Disturbance Models” on
page 3-53 to obtain a physical parameterization of the Kalman gain.

x̃ t() A θ()x t() B θ()u t() K θ()e t()+ +=

x 0() x0 θ()=

y t() C θ()x t() D θ()u t() e t()+ +=

x̃ t() x· t() x t Ts+()

θ

θ

idgrey

4-99

mn = idgrey('mynoise',[0.1,-2,1,3,0.2]','d')
m = pem(z,mn)

idinput

4-100

4idinputPurpose Generate identification input signals

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

Description idinput generates input signals of different kinds, which are typically used for
identification purposes. u is returned as a matrix or column vector.

For further use in the toolbox, we recommend that you create an iddata object
from u, indicating sampling time, input names, periodicity, and so on:

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a column
vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length M*P and
periodic with period P.

Default is nu = 1 and M = 1.

type defines the type of input signal to be generated. This argument takes one
of the following values:

• type = 'rgs': Gives a random, Gaussian signal.

• type = 'rbs': Gives a random, binary signal. This is the default.

• type = 'prbs': Gives a pseudorandom, binary signal.

• type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument band. For
the choices type = 'rs', 'rbs', and 'sine', this argument is a row vector with
two entries

band = [wlow, whigh]

that determine the lower and upper bound of the passband. The frequencies
wlow and whigh are expressed in fractions of the Nyquist frequency. A white
noise character input is thus obtained for band = [0 1], which is also the
default value.

idinput

4-101

For the choice type = 'prbs',

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B (the
clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu for the
choices type = 'rbs', 'prbs', and 'sine'. For type = 'rgs', the signal level
is such that minu is the mean value of the signal, minus one standard deviation,
while maxu is the mean value plus one standard deviation. Gaussian white
noise with zero mean and variance one is thus obtained for levels = [-1, 1],
which is also the default value.

Some PRBS Aspects
If more than one period is demanded (that is, M > 1), the length of the data
sequence and the period of the PRBS signal are adjusted so that an integer
number of maximum length PRBS periods is always obtained. If M = 1, the
period of the PRBS signal is chosen to that it is longer than P = N. In the
multiinput case, the signals are maximally shifted. This means P/nu is an
upper bound for the model orders that can be estimated with such a signal.

Some Sine Aspects
In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P intersected with pi*[band(1)
band(2)]

(for Grid_Skip, see below.) For multiinput signals, the different inputs use
different frequencies from this grid. An integer number of full periods is always
delivered. The selected frequencies are obtained as the second output
argument, freqs, where row ku of freqs contains the frequencies of input
number ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

idinput

4-102

meaning that No_of_Sinusoids is equally spread over the indicated band.
No_of_Trials (different, random, relative phases) are tried until the lowest
amplitude signal is found.

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency multiples, for
example, to detect nonlinearities of various kinds.

Algorithm Very simple algorithms are used. The frequency contents are achieved for
'rgs' by an eighth-order Butterworth, noncausal filter, using idfilt. This is
quite reliable. The same filter is used for the 'rbs' case, before making the
signal binary. This means that the frequency contents are not guaranteed to be
precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread over the
chosen grid, and each sinusoid is given a random phase. A number of trials are
made, and the phases that give the smallest signal amplitude are selected. The
amplitude is then scaled so as to satisfy the specifications of levels.

References See Söderström and Stoica (1989), Chapter C5.3. For a general discussion of
input signals, see Ljung (1999), Section 13.3.

Examples Create an input consisting of five sinusoids spread over the whole frequency
interval. Compare the spectrum of this signal with that of its square. The
frequency splitting (the square having spectral support at other frequencies)
reveals the nonlinearity involved:

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
ffplot(etfe(u),'r*',etfe(u2),'+')

idmdlsim

4-103

4idmdlsimPurpose Simulate idmodel objects in Simulink

Syntax idmdlsim

Description Typing idmdlsim launches the Idmodel block in Simulink. By clicking the block
you can specify the idmodel to simulate, whether to include initial state values,
and whether to add noise to the simulation in accordance with the model’s own
noise description.

idmodel

4-104

4idmodel Purpose Package common model properties

Description idmodel is an object that the user does not deal with directly. It contains all the
common properties of the model objects idarx, idgrey, idpoly, idproc, and
idss, which are returned by the different estimation routines.

Basic Use
If you just estimate models from data, the model objects should be transparent.
All parametric estimation routines return idmodel results.

m = arx(Data,[2 2 1])

The model m contains all relevant information. Just typing m will give a brief
account of the model. present(m) also gives information about the
uncertainties of the estimated parameters. get(m) gives a complete list of
model properties.

Most of the interesting properties can be directly accessed by subreferencing.

m.a
m.da

See the property list obtained by get(m), as well as the property lists of idgrey,
idarx, idpoly, and idss in Chapter 4, “Function Reference,” for more details
on this. See also idprops.

The characteristics of the model m can be directly examined and displayed by
commands like impulse, step, bode, nyquist, and pzmap. The quality of the
model is assessed by commands like compare and resid. If you have the
Control System Toolbox, typing view(m) gives access to various display
functions.

To extract state-space matrices, transfer function polynomials, etc., use the
commands arxdata, polydata, tfdata, ssdata, and zpkdata.

To compute the frequency response of the model, use the commands idfrd and
freqresp.

Creating and Modifying Model Objects
If you want to define a model to use, for example, for simulating data, you need
to use the model creator functions:

idmodel

4-105

• idarx, for multivariable ARX models

• idgrey, for user-defined gray-box state-space models

• idpoly, for single-output polynomial models

• idproc, for simple, continuous-time process models

• idss, for state-space models

If you want to estimate a state-space model with a specific internal
parameterization, you need to create an idss model or an idgrey model. See
the reference pages for these functions.

Dealing with Input and Output Channels
For multivariable models, you construct submodels containing a subset of
inputs and outputs by simple subreferencing. The outputs and input channels
can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote no
channels. The channels can be referenced by number or by name. For several
names, you must use a cell array, such as

m3 = m('position',{'power','speed'})

or

m3 = m(3,[1 4])

Thus m3 is the model obtained from m by looking at the transfer functions from
input numbers 1 and 4 (with input names 'power' and 'speed') to output
number 3 (with name position).

For a single-output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single-input model,

m5 = m(outputs)

selects the indicated output channels.

Subreferencing is quite useful, for example, when a plot of just some channels
is desired.

idmodel

4-106

The Noise Channels
The estimated models have two kinds of input channels: the measured inputs
u and the noise inputs e. For a general linear model m, we have

(4-2)

where u is the nu-dimensional vector of measured input channels and e is the
ny-dimensional vector of noise channels. The covariance matrix of e is given by
the property 'NoiseVariance'. Occasionally this matrix is written in
factored form,

This means that e can be written as

where is white noise with identity covariance matrix (independent noise
sources with unit variances).

If m is a time series (nu = 0), G is empty and the model is given by

For the model m, the restriction to the transfer function matrix G is obtained by

m1 = m('measured') or just m1 = m('m')

Then e is set to 0 and H is removed.

Analogously,

m2 = m('noise') or just m2 = m('n')

creates a time-series model m2 from m by ignoring the measured input. That is,
m2 describes the signal He.

For a system with measured inputs, bode, step, and other transformation and
display functions deal with the transfer function matrix G. To obtain or graph
the properties of the disturbance model H, it is therefore important to make the
transformations m('n'). For example,

bode(m('n'))

plots the additive noise spectra according to the model m, while

y t() G q()u t() H q()e t()+=

Λ

Λ LLT=

e Lv=

v

y t() H q()e t()=

idmodel

4-107

bode(m)

just plots the frequency responses of G.

To study the noise contributions in more detail, it is useful to convert the noise
channels to measured channels, using the command noisecnv.

m3 = noisecnv(m)

This creates a model m3 with all input channels, both measured u and noise
sources e, treated as measured signals,. That is, m3 is a model from u and e to
y, describing the transfer functions G and H. The information about the
variance of the innovations e is lost. For example, studying the step response
from the noise channels does not take into consideration how large the noise
contributions actually are.

To include that information, e should first be normalized, , so that
becomes white noise with an identity covariance matrix.

m4 = noisecnv(m,'Norm')

This creates a model m4 with u and treated as measured signals.

For example, the step responses from v to y will now reflect the typical size of
the disturbance influence because of the scaling by L. In both cases, the
previous noise sources that have become regular inputs will automatically get
input names that are related to the corresponding output. The unnormalized
noise sources e have names like 'e@ynam1' (noise e at output channel ynam1),
while the normalized sources v are called 'v@ynam1'.

Retrieving Transfer Functions
The functions that retrieve transfer function properties, ssdata, tfdata, and
zpkdata, will thus work as follows for a model (Equation 4-2) with measured
inputs. (fcn is ssdata, tfdata, or zpkdata.)

fcn(m) returns the properties of G (ny outputs and nu inputs).

fcn(m('n')) returns the properties of the transfer function H (ny outputs and
ny inputs).

e Lv= v

v

y t() G q()u t() H q()Lv t()+ G HL
u
v

= =

idmodel

4-108

fcn(noisec nv(m,'Norm')) returns the properties of the transfer function [G
HL} (ny outputs and ny+nu inputs). Analogously,

m1 = m('n'). fcn(noisecnv(m1,'Norm'))

returns the properties of the transfer function HL (ny outputs and ny inputs).

If m is a time-series model, fcn(m) returns the properties of H, while

fcn(noisecnv(m,'Norm'))

returns the properties of HL.

Note that the estimated covariance matrix NoiseVariance itself is uncertain.
This means that the uncertainty information about H is different from that of
HL.

idmodel
Properties

In the list below, ny is the number of output channels, and nu is the number of
input channels:

• Name: An optional name for the data set. An arbitrary string.

• OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1 containing
the names of the output and input channels. For estimated models, these are
inherited from the data. If not specified, they are given default names
{'y1','y2',...} and {'u1','u2',...}.

• OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1 containing
the units of the output and input channels. Inherited from data for estimated
models.

• TimeUnit: Unit for the sampling interval.

• Ts: Sampling interval. A nonnegative scalar. Ts = 0 denotes a
continuous-time model. Note that changing just Ts will not recompute the
model parameters. Use c2d and d2c for recomputing the model to other
sampling intervals.

• ParameterVector: Vector of adjustable parameters in the model structure.
Initial/nominal values or estimated values, depending on the status of the
model. A column vector.

• PName: The names of the parameters. A cell array of the length of the
parameter vector. If not specified, it will contain empty strings. See also
setpname.

idmodel

4-109

• CovarianceMatrix: Estimated covariance matrix of the parameter vector.
For a nonestimated model this is the empty matrix. For state-space models
in the 'Free' parameterization the covariance matrix is also the empty
matrix, since the individual matrix elements are not identifiable then.
Instead, in this case, the covariance information is hidden (in the hidden
property 'Utility') and retrieved by the relevant functions when
necessary. Setting CovarianceMatrix to 'None' inhibits calculation of
covariance and uncertainty information. This can save substantial time for
certain models. See “No Covariance” on page 3-104.

• NoiseVariance: Covariance matrix of the noise source e. An ny-by-ny matrix.

• InputDelay: Vector of size nu-by-1, containing the input delay from each
input channel. For a continuous-time model (Ts = 0) the delay is measured
in TimeUnit, while for discrete-time models (Ts > 0) the delay is measured
as the number of samples. Note the difference between InputDelay and nk
(which is a property of idarx, idss, and idpoly). 'Nk' is a model structure
property that tells the model structure to include such an input delay. In that
case, the corresponding state-space matrices and polynomials will explicitly
contain Nk input delays. The property InputDelay, on the other hand, is an
indication that in addition to the model as defined, the inputs should be
shifted by the given amount. InputDelay is used by sim and the estimation
routines to shift the input data. When computing frequency responses, the
InputDelay is also respected. Note that InputDelay can be both positive and
negative.

• Algorithm: See the reference page for Algorithm Properties.

• EstimationInfo: See the reference page for EstimationInfo.

• Notes: An arbitrary field to store extra information and notes about the
object.

• UserData: An arbitrary field for any possible use.

Note All properties can be set or retrieved either by these commands or by
subscripts. Autofill applies to all properties and values, and is case
insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m).

idmodel

4-110

Subreferencing The outputs and input channels can be referenced according to

m(outputs,inputs)

Use a colon (:) to denote all channels and an empty matrix ([]) to denote no
channels. The channels can be referenced by number or by name. For several
names, you must use a cell array.

m2 = m('y3',{'u1','u4'})

m3 = m(3,[1 4])

For a single output model m,

m4 = m(inputs)

selects the corresponding input channels, and for a single input model,

m5 = m(outputs)

selects the indicated output channels.

The string 'measured' (or any abbreviation like 'm') means the measured
input channels.

m4 = m(3,'m')
m('m') is the same as m(:,'m')

Similarly, the string 'noise' (or any abbreviation) refers to the noise input
channels. See “The Noise Channels” on page 4-106 for more details.

Horizontal
Concatenation

Adding input channels,

m = [m1,m2,...,mN]

creates an idmodel object m, consisting of all the input channels in m1,... mN.
The output channels of mk must be the same.

Vertical
Concatenation

Adding output channels,

m = [m1;m2;... ;mN]

creates an idmodel object m consisting of all the output channels in m1, m2, ..mN.
The input channels of mk must all be the same.

idmodel

4-111

Online Help
Functions

See idhelp. idprops idmodel, help idmodel/subsref, help
idmodel/subsasgn, help idmodel/horzcat, and help idmodel/vertcat.

See Also noisecnv, nkshift, view, size, idmdlsim, sim

idpoly

4-112

4idpolyPurpose Create structure for input-output models using numerator and denominator
polynomials

Syntax m = idpoly(A,B)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts,'Property1',Value1,...

'PropertyN',ValueN)

m = idpoly(mi)

Description idpoly creates a model object containing parameters that describe the general
multiinput single-output model structure.

A, B, C, D, and F specify the polynomial coefficients.

For single-input systems, these are all row vectors in the standard MATLAB
format.

A = [1 a1 a2 ... ana]

consequently describes

A, C, D, and F all start with 1, while B contains leading zeros to indicate the
delays. See “Polynomial Representation of Transfer Functions” on page 3-11.

For multiinput systems, B and F are matrices with one row for each input.

For time series, B and F are entered as empty matrices.

B = []; F = [];

NoiseVariance is the variance of the white noise sequence , while Ts is the
sampling interval.

Trailing arguments C, D, F, NoiseVariance, and Ts can be omitted, in which
case they are taken as 1. (If B = [], then F is taken as [].) The property
name/property value pairs can start directly after B.

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–()= …

Bnu q()
Fnu q()
-------------------unu t nknu–() C q()

D q()
-------------e t()+ + +

A q() 1 a1q 1– … anaq na–+ + +=

e t()

idpoly

4-113

Ts = 0 means that the model is a continuous-time one. Then the interpretation
of the arguments is that

A = [1 2 3 4]

corresponds to the polynomial in the Laplace variable s, and
so on. For continuous-time systems, NoiseVariance indicates the level of the
spectral density of the innovations. A sampled version of the model has the
innovations variance NoiseVariance/Ts, where Ts is the sampling interval.
The continuous-time model must have a white noise component in its
disturbance description. See “Spectrum Normalization and the Sampling
Interval” on page 3-107.

For discrete-time models (Ts > 0), note the following: idpoly strips any trailing
zeros from the polynomials when determining the orders. It also strips leading
zeros from the B polynomial to determine the delays. Keep this in mind when
you use idpoly and polydata to modify earlier estimates to serve as initial
conditions for estimating new structures. See “Initial Parameter Values” on
page 3-99.

idpoly can also take any single-output idmodel or LTI object mi as an input
argument. If an LTI system has an input group with name 'Noise', these
inputs are interpreted as white noise with unit variance, and the noise model
of the idpoly model is computed accordingly.

Properties • na, nb, nc, nd, nf, nk: The orders and delays of the polynomials. Integers or
row vectors of integers.

• a, b, c, d, f: The polynomials, described by row vectors and matrices as
detailed above.

• da, db, dc, dd, df: The estimated standard deviation of the polynomials.
Cannot be set.

• InitialState: How to deal with the initial conditions that are required to
compute the prediction of the output. Possible values are

- 'Estimate': The necessary initial states are estimated from data as extra
parameters.

- 'Backcast': The necessary initial states are estimated by a backcasting
(backward filtering) process, described in Knudsen (1994).

- 'Zero': All initial states are taken as zero.

- 'Auto': An automatic choice among the above is made, guided by the data.

s3 2s2 3s 4+ + +

idpoly

4-114

In addition, any idpoly object also has all the properties of idmodel. See
idmodel properties and Algorithm Properties.

Note that you can set or retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values, and
these are case insensitive.

m.a=[1 -1.5 0.7];
set(m,'ini','b')
p = roots(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idpoly.

Examples To create a system of ARMAX, type

A = [1 -1.5 0.7];
B = [0 1 0.5];
C = [1 -1 0.2];
m0 = idpoly(A,B,C);

This gives a system with one delay (nk = 1).

Create the continuous-time model

Sample it with T = 0.1 and then simulate it without noise.

B=[0 1;1 3];
F=[1 1 0;1 2 4]
m = idpoly(1,B,1,1,F,1,0)
md = c2d(m,0.1)
y = sim(md,[u1 u2])

Note that the continuous-time model is automatically sampled to the sampling
interval of the data, when simulated, so the above is also achieved by

u = iddata([],[u1 u2],0.1)
y = sim(m,u)

References Ljung (1999) Section 4.2 for the model structure family.

y t() 1
s s 1+()
--------------------u1 t() s 3+

s2 2s 4+ +
----------------------------u2 t() e t()+ +=

idpoly

4-115

Knudsen, T., (1994), “A new method for estimating ARMAX models,” In Proc.
10th IFAC Symposium on System Identification, pp. 611-617, Copenhagen,
Denmark, for the backcast method.

See Also sim, idss

idproc

4-116

4idprocPurpose Create simple, continuous-time process models

Syntax m = idproc(Type)
m = idproc(Type,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(Data,Type) % to directly estimate an idproc model

Description The function idproc is used to create typical simple, continuous-time process
models as idproc objects. The model has one output, but can have several
inputs.

The character of the model is defined by the argument Type. This is an acronym
made up of the following symbols:

• P: All 'Type' acronyms start with this letter.

• 0, 1, 2, or 3: This integer denotes the number of time constants (poles) to be
modeled. Possible integrations (poles in the origin) are not included in this
number.

• I: The letter I is included to mark that an integration is enforced
(self-regulation process).

• D: The letter D is used to mark that the model contains a time delay (dead
time).

• Z: The letter Z is used to mark an extra numerator term: a zero.

• U: The letter U is included to mark that underdamped modes
(complex-valued poles) are permitted. If U is not included, all poles are
restricted to be real.

This means, for example, that Type = 'P1D' corresponds to the model with
transfer function

while Type = 'P0I' is

and Type = 'P3UZ' is

G s()
Kp

1 sTp1+
----------------------e

Tds–
=

G s()
Kp
s

-------=

idproc

4-117

For multiinput systems, Type is a cell array where each cell describes the
character of the model from the corresponding input, like
Type = {'P1D'.'P0I'} for the two-input model

(4-3)

The parameters of the model are

• Kp: The static gain

• Tp1, Tp2, Tp3: The real-time constants (corresponding to poles in 1/Tp1, etc.)

• Tw and Zeta: The “resonance time constant” and the damping factor
corresponding to a denominator factor (1+2 Zeta Tw s + (Tw s)^2). If
underdamped modes are allowed, Tw and Zeta replace Tp1 and Tp2. A third
real pole, Tp3, could still be included.

• Td: The time delay

• Tz: The numerator zero

These properties contain fields that give the values of the parameters, upper
and lower bounds, and information whether they are locked to zero, have a
fixed value, or are to be estimated. For multiinput models, the number of
entries in these fields equals the number of inputs. This is described in more
detail below.

The idproc object is a child of idmodel. Therefore any idmodel properties can
be set as property name/property value pairs in the idproc command. They can
also be set by the command set, or by subassignment, as in

m.InputName = {'speed','voltage'}
m.kp = 12

In the multiinput case, models for specific inputs can be obtained by regular
subreferencing.

m(ku)

G s() Kp
1 Tzs+

1 2ςTws Tws()2+ +() 1 Tp3s+()
---=

Y s()
Kp 1()

1 sTp1 1()+
-------------------------------e

Tds–
U1 s()

Kp 2()
s

---------------U2 s()+=

idproc

4-118

There are also two properties, DisturbanceModel and InitialState, that can
be used to expand the model. See below.

idproc
Properties

• Type: A string or a cell array of strings with as many elements as there are
inputs. The string is an acronym made up of the characters P, Z, I, U, D and
an integer between 0 and 3. The string must start with P, followed by the
integer, while possible other characters can follow in any order. The integer
is the number of poles (not counting a possible integration), Z means the
inclusion of a numerator zero, D means inclusion of a time delay, while U
marks that the modes can be underdamped (a pair of complex conjugated
poles). I means that an integration in the model is enforced.

• Kp, Tp1, Tp2, Tp3, Tw, Zeta, Tz, Td: These are the parameters as explained
above. Each of these is a structure with the following fields:

- value: Numerical value of the parameter.

- max: Maximum allowed value of the parameter when it is estimated.

- min: Minimum allowed value of the parameter when it is estimated. For
multiinput models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero'.

'Zero' means that the parameter is locked to zero and not included in the
model. Assigning, for example, Type = 'P1' means that the status of Tp2,
Tp3, Tw, and Zeta will be 'Zero'.

The value 'Fixed' means that the parameter is fixed to its value, and will
not be estimated.

The value 'Estimate' means that the parameter value should be
estimated.

For multiinput modes, status is a cell array with one element for each
input, while value, max, and min are row vectors.

• DisturbanceModel: Allows an additive disturbance model as in

(4-4)

where G(s) is a process model and e(t) is white noise, and C/D is a first- or
second-order transfer function.

DisturbanceModel can assume the following values:

- 'None': This is the default. No disturbance model is included (that is,
C=D=1).

y t() G s()u t() C s()
D s()
------------e t()+=

idproc

4-119

- 'arma1': The disturbance model is a first-order ARMA model (that is, C
and D are first-order polynomials).

- 'arma2' or 'Estimate': The disturbance model is a second-order ARMA
model (that is, C and D are second-order polynomials).

When a disturbance model has been estimated, the property
DisturbanceModel is returned as a cell array, with the first entry being the
status as just defined, and the second entry being the actual model, delivered
as a continuous-time idpoly object.

• InitialState: Affects the parameterization of the initial values of the states
of the model. It assumes the same values as for other models:

- 'Zero': The initial states are fixed to zero.

- 'Estimate': The initial states are treated as parameters to be estimated.

- 'Backcast': The initial state vector is adjusted, during the parameter
estimation step, to a suitable value, but it is not stored.

- 'Auto': Makes a data-dependent choice among the values above.

• InputLevel: The offset level of the input signal(s). This is of particular
importance for those input channels that contain an integration. InputLevel
will then define the level from which the integration takes place, and that
cannot be handled by estimating initial states. InputLevel has the same
structure as the model parameters Kp, etc., and thus contains the following
fields:

- value: Numerical value of the parameter. For multiinput models, this is a
row vector.

- max: Maximum allowed value of the parameter when it is estimated.

- min: Minimum allowed value of the parameter when it is estimated. For
multiinput models, these are row vectors.

- status: Assumes one of 'Estimate', 'Fixed', or 'Zero' with the same
interpretations.

In addition, any idproc object also has all the properties of idmodel. See
Algorithm Properties, EstimationInfo, and idmodel.

Note that all properties can be set or retrieved using either the set and get
commands or subscripts. Autofill applies to all properties and values, and these
are case insensitive. Also 'u' and 'y' are short for 'Input' and 'Output',
respectively. You can also set all properties at estimation time as property
name/property value pairs in the call to pem. An extended syntax allows direct

idproc

4-120

setting of the fields of the parameter values, so that assigning a numerical
value is automatically attributed to the value field, while a string is attributed
to the status field.

m.kp = 10
m.tp1 = 'estimate'
m = pem(Data,'P1D','kp',10) % initializing the parameter Kp in 10
m = pem(Data,'P1D','kp',10,'kp','fix') % fixing the parameter Kp
to the value 10
m.= pem(Data,'P2U','kp',{'max',4},'kp',{'min',3}) % constraining
Kp to lie between 3 and 4.
m = pem(Data,{'P2I','P1D',},'ulevel',{'est','zer'}) % two inputs,
estimate the offset level

% of the first one
m = pem(Data,'P2U','dist','est') % estimate a noise model
m = pem(Data,'P2U','dist',{'fix',noimod}) % use a fixed
noisemodel, given by the continuous-time idpoly model noimod
m.kp.min(2) = 12 % (minimum Kp for the second input)
m.kp.status{2} = 'fix' % fixing the gain for the second input.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops and idproc.

 Examples m = pem(Data,'P2D','dist','arma1')

idss

4-121

4idssPurpose Create structure for linear state-space models with known and unknown
parameters

Syntax m = idss(A,B,C,D)
m = idss(A,B,C,D,K,x0,Ts,'Property1',Value1,...,'PropertyN',ValueN)
mss = idss(m1)

Description The function idss is used to construct state-space model structures with
various parameterizations. It is a complement to idgrey and deals with
parameterizations that do not require the user to write a special M-file. Instead
it covers parameterizations that are either 'Free', that is, all parameters in
the A, B, and C matrices can be adjusted freely, or 'Canonical', meaning that
the matrices are parameterized as canonical forms. The parameterization can
also be 'Structured', which means that certain elements in the state-space
matrices are free to be adjusted, while others are fixed. This is explained below.

Ts is the sampling interval. Ts = 0 means a continuous-time model. The default
is Ts = 1.

The idss object m describes state-space models in innovations form of the
following kind:

Here is the time derivative for a continuous-time model and
for a discrete-time model.

The model m will contain information both about the nominal/initial values of
the A, B, C, D, K, and X0 matrices and about how these matrices are
parameterized by the parameter vector (to be estimated).

The nominal model is defined by idss(A,B,C,D,K,X0). If K and X0 are omitted,
they are taken as zero matrices of appropriate dimensions.

Defining an idss object from a given model,

mss = idss(m1)

x̃ t() A θ()x t() B θ()u t() K θ()e t()+ +=

x 0() x0 θ()=

y t() C θ()x t() D θ()u t() e t()+ +=

x̃ t() x· t() x t Ts+()

θ

idss

4-122

constructs an idss model from any idmodel or LTI system m1.

If m1 is an LTI system (ss, tf, or zpk) that has no InputGroup called 'Noise',
the corresponding state-space matrices A, B, C, D are used to define the idss
object. The Kalman gain K is then set to zero.

If the LTI system has an InputGroup called 'Noise', these inputs are
interpreted as white noise with a covariance matrix equal to the identity
matrix. The corresponding Kalman gain and noise variance are then computed
and entered into the idss model together with A, B, C, and D.

Parameterizations
There are several different ways to define the parameterization of the
state-space matrices. The parameterization determines which parameters can
be adjusted to data by the parameter estimation routine pem.

• Free black-box parameterizations: This is the default situation and
corresponds to letting all parameters in A, B, and C be freely adjustable. You
do this by setting the property 'SSParameterization' = 'Free'. The
parameterizations of D, K, and X0 are then determined by the following
properties:

- 'nk': A row vector of the same length as the number of inputs. The kuth
element is the delay from input channel number ku. Thus nk = [0,...,0]
means that there is no delay from any of the inputs, and that consequently
all elements of the D matrix should be estimated. nk =[1,...,1] means
that there is a delay of 1 from each input, so that the D matrix is fixed to
be zero.

- 'DisturbanceModel': This property affects the parameterization of K and
can assume the following values:

'Estimate': All elements of the K matrix are to be estimated.

'None': All elements of K are fixed to zero.

'Fixed': All elements of K are fixed to their nominal/initial values.

idss

4-123

- 'InitialState': Affects the parameterization of X0 and can assume the
following values:

'Auto': An automatic choice of the following is made, depending on data
(default).

'Estimate': All elements of X0 are to be estimated.

'Zero': All elements of X0 are fixed to zero.

'Fixed': All elements of X0 are fixed to their nominal/initial values.

'Backcast': The vector X0 is adjusted, during the parameter estimation
step, to a suitable value, but it is not stored as an estimation result.

• Canonical black-box parameterizations: You do this by setting the property
'SSParameterization' = 'Canonical'. The matrices A, B, and C are then
parameterized as an observer canonical form, which means that ny (number
of output channels) rows of A are fully parameterized while the others
contain 0’s and 1’s in a certain pattern. The C matrix is built up of 0’s and 1’s
while the B matrix is fully parameterized. See Equation (A.16) in Ljung
(1999) for details. The exact form of the parameterization is affected by the
property 'CanonicalIndices'. The default value 'Auto' is a good choice.
The parameterization of the D, K, and X0 matrices in this case is determined
by the properties 'nk', 'DisturbanceModel', and 'InitialState'.

• Arbitrarily structured parameterizations: The general case, where arbitrary
elements of the state-space matrices are fixed and others can be freely
adjusted, corresponds to the case 'SSParameterization' = 'Structured'.
The parameterization is determined by the idss properties As, Bs, Cs, Ds, Ks,
and X0s. These are the structure matrices that are “shadows” of the
state-space matrices, so that an element in these matrices that is equal to
NaN indicates a freely adjustable parameter, while a numerical value in these
matrices indicates that the corresponding system matrix element is fixed
(nonadjustable) to this value.

idss Properties • SSParameterization has the following possible values:

- 'Free': Means that all parameters in A, B, and C are freely adjustable,
and the parameterizations of D, K, and X0 depend on the properties 'nk',
'DisturbanceModel', and 'InitialState'.

- 'Canonical': Means that A and C are parameterized as an observer
canonical form. The details of this parameterization depend on the
property 'CanonicalIndices'. The B matrix is always fully

idss

4-124

parameterized, and the parameterizations of D, K, and X0 depend on the
properties 'nk', 'DisturbanceModel', and 'InitialState'.

- 'Structured': Means that the parameterization is determined by the
properties (the structure matrices) 'As', 'Bs', 'Cs', 'Ds', 'Ks', and
'X0s'. A NaN in any position in these matrices denotes a freely adjustable
parameter, and a numeric value denotes a fixed and nonadjustable
parameter.

• nk: A row vector with as many entries as the number of input channels. The
entry number k denotes the time delay from input number k to y(t). This
property is relevant only for 'Free' and 'Canonical' parameterizations. If
any delay is larger than 1, the structure of the A, B, and C matrices will
accommodate this delay, at the price of a higher-order model.

• DisturbanceModel has the following possible values:

- 'Estimate': Means that the K matrix is fully parameterized.

- 'None': Means that the K matrix is fixed to zero. This gives a so-called
output-error model, since the model output depends on past inputs only.

- 'Fixed': Means that the K matrix is fixed to the current nominal values.

• InitialState has the following possible values:

- 'Estimate': Means that X0 is fully parameterized.

- 'Zero': Means that X0 is fixed to zero.

- 'Fixed': Means that X0 is fixed to the current nominal value.

- 'Backcast': The value of X0 is estimated by the identification routines as
the best fit to data, but it is not stored.

- 'Auto': Gives an automatic and data-dependent choice among
'Estimate', 'Zero', and 'Backcast'.

• A, B, C, D, K, and X0: The state-space matrices that can be set and retrieved at
any time. These contain both fixed values and estimated/nominal values.

• dA, dB, dC, dD, dK, and dX0: The estimated standard deviations of the
state-space matrices. These cannot be set, only retrieved. Note that these are
not defined for an idss model with 'Free' SSParameterization. You can
then convert the parameterization to 'Canonical' and study the
uncertainties of the matrix elements in that form.

• As, Bs, Cs, Ds, Ks, and X0s: These are the structure matrices that have the
same sizes as A, B, C, etc., and show the freely adjustable parameters as NaNs
in the corresponding position. These properties are used to define the model

idss

4-125

structure for 'SSParameterization' = 'Structured'. They are always
defined, however, and can be studied also for the other parameterizations.

• CanonicalIndices: Determines the details of the canonical
parameterization. It is a row vector of integers with as many entries as there
are outputs. They sum up to the system order. This is the so-called
pseudocanonical multiindex with an exact definition, for example, on page
132 in Ljung (1999). A good default choice is 'Auto'. This property is
relevant only for the canonical parameterization case. Note however, that for
'Free' parameterizations, the estimation algorithms also store a
canonically parameterized model to handle the model uncertainty.

In addition to these properties, idss objects also have all the properties of the
idmodel object. See idmodel properties, Algorithm Properties, and
EstimationInfo.

Note that all properties can be set and retrieved either by the set and get
commands or by subscripts. Autofill applies to all properties and values, and
these are case insensitive.

m.ss='can'
set(m,'ini','z')
p = eig(m.a)

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idss.

Examples Define a continuous-time model structure corresponding to

with initial values

x·
θ1 0

0 θ2

x
θ3

θ4

u+=

y 1 1 x e+=

idss

4-126

and estimate the free parameters.

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0
m0 = idss(A,B,C,D);
m0.As = [NaN,0;0,NaN];
m0.Bs = [NaN;NaN];
m0.Cs = [1,1];
m0.Ts = 0;
m = pem(z,m0);

Estimate a model in free parameterization. Convert it to continuous time, then
convert it to canonical form and continue to fit this model to data.

m1 = n4sid(data,3);
m1 = d2c(m1);
m1.ss ='can';
m = pem(data,m1);

All of this can be done at once by

m = pem(data,3,'ss','can','ts',0)

See Also n4sid, pem, setstruc

θ

0.2–
0.3–
2
4

=

impulse

4-127

4impulsePurpose Plot impulse response with confidence regions

Syntax impulse(m)
impulse(data)
impulse(m,'sd',sd,Time)
impulse(m,'sd',sd,Time,'fill')
impulse(data,'sd',sd,'pw',na,Time)
impulse(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
impulse(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,

mN,'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = impulse(m)
mod = impulse(data)

Description impulse can be applied both to idmodels and to iddata sets, as well as to any
mixture.

For a discrete-time idmodel m, the impulse response y and, when required, its
estimated standard deviation ysd, are computed using sim. When called with
output arguments, y, ysd, and the time vector t are returned. When impulse is
called without output arguments, a plot of the impulse response is shown. If sd
is given a value larger than zero, a confidence region around zero is drawn. It
corresponds to the confidence of sd standard deviations. In the plots, the
impulse is inversely scaled with the sampling interval so that it has the same
energy regardless of the sampling interval.

Adding an argument 'fill' among the input arguments gives an uncertainty
region marked by a filled area rather than by dash-dotted lines.

Setting the Time Interval
You can specify the start time T1 and the end time T2 using Time= [T1 T2]. If
T1 is not given, it is set to -T2/4. The negative time lags (the impulse is always
assumed to occur at time 0) show possible feedback effects in the data when the
impulse is estimated directly from data. If Time is not specified, a default value
is used.

Estimating the Impulse Response from data
For an iddata set data, impulse(data) estimates a high-order, noncausal FIR
model after first having prefiltered the data so that the input is “as white as
possible.” The impulse response of this FIR model and, when asked for, its

impulse

4-128

confidence region, are then plotted. Note that it is not always possible to deliver
the demanded time interval when the response is estimated. A warning is then
issued. When called with an output argument, impulse, in the iddata case,
returns this FIR model, stored as an idarx model. The order of the
prewhitening filter can be specified by the property name/property value pair
'pw'/na. The default value is na = 10.

Several Models/Data Sets
Any number and any mixture of models and data sets can be used as input
arguments. The responses are plotted with each input/output channel (as
defined by the model and data set InputName and OutputName properties) as a
separate plot. Colors, line styles, and marks can be defined by PlotStyle
values. These are the same as for the regular plot command, as in

impulse(m1,'b-*',m2,'y--',m3,'g')

Noise Channels
The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with unit variance, normalized noise source v:

• impulse(m) plots the impulse response of the transfer function G.

• impulse(m('n')) plots the impulse response of the transfer function H (ny
inputs and ny outputs).The input channels have names e@yname, where
yname is the name of the corresponding output.

• If m is a time series, that is nu = 0, impulse(m) plots the impulse response
of the transfer function H.

• impulse(noisecnv(m)) plots the impulse response of the transfer function
[G H] (nu+ny inputs and ny outputs). The noise input channels have names
e@yname, where yname is the name of the corresponding output.

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

impulse

4-129

• impulse(noisecnv(m,'norm')) plots the impulse response of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input channels
have names v@yname, where yname is the name of the corresponding output.

Arguments If impulse is called with a single idmodel m, the output argument y is a 3-D
array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector t,
ny is the number of output channels, and nu is the number of input channels.
Thus y(:,ky,ku) is the response in output ky to an impulse in the kuth input
channel.

ysd has the same dimensions as y and contains the standard deviations of y.

If impulse is called with an output argument and a single data set in the input
arguments, the output is returned as an idarx model mod containing the
high-order FIR model and its uncertainty. By calling impulse with mod, the
responses can be displayed and returned without your having to redo the
estimation.

Examples impulse(data,'sd',3) estimates and plots the impulse response. To take a
closer look at subsystems, do the following:

mod = impulse(data)
impulse(mod(2,3),'sd',3)

See Also cra, step

init

4-130

4initPurpose Set or randomize initial parameter values

Syntax m = init(m0)
m = init(m0,R,pars,sp)

Description This function randomizes initial parameter estimates for model structures m0
for any idmodel type. m is the same model structure as m0, but with a different
nominal parameter vector. This vector is used as the initial estimate by pem.

The parameters are randomized around pars with variances given by the row
vector R. Parameter number k is randomized as pars(k) + e*sqrt(R(k)),
where e is a normal random variable with zero mean and a variance of 1. The
default value of R is all ones, and the default value of pars is the nominal
parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only models
that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires stability
only of the predictor. sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means without
any random search. To just stabilize such an initial model, set R = 0. With
R > 0, randomization is also done.

For model structures where a random search is necessary to find a stable
model/predictor, a maximum of 100 trials is made by init. It can be difficult to
find a stable predictor for high-order systems by trial and error.

See Also idss, n4sid, pem

isreal

4-131

4isrealPurpose Determine whether model or data set contains real parameters or data

Syntax isreal(Data)
isreal(Model)

Description Data is an iddata set and Model is any idmodel. The isreal function returns
1 if all parameters of the model are real and if all signals of the data set are
real.

See Also realdata

ivar

4-132

4ivarPurpose Estimate AR model using instrumental variable methods

Syntax m = ivar(y,na)
m = ivar(y,na,nc,maxsize)

Description The parameters of an AR model structure

are estimated using the instrumental variable method. y is the signal to be
modeled, entered as an iddata object (outputs only). na is the order of the A
polynomial (the number of A parameters). The resulting estimate is returned
as an idpoly model m. The routine is for scalar time-domain signals only.

In the above model, is an arbitrary process, assumed to be a moving
average process of order nc, possibly time varying. (Default is nc = na.)
Instruments are chosen as appropriately filtered outputs, delayed nc steps.

The optional argument maxsize is explained under Algorithm Properties.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and by the
forward-backward least squares method.

y = iddata(sin([1:500]'∗1.2) + sin([1:500]'∗1.5) +
0.2∗randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
bode(miv,mls)

References Stoica, P., et al., Optimal Instrumental variable estimates of the AR-parameters
of an ARMA process, IEEE Trans. Autom. Control, Vol. AC-30, 1985,
pp. 1066-1074.

See Also ar, etfe, spa

A q()y t() v t()=

v t()

ivstruc

4-133

4ivstrucPurpose Compute loss functions for sets of output-error model structures

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX type.
Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices for single-input systems.

ze and zv are iddata objects containing output-input data. Only time-domain
data is supported. Models for each model structure defined in NN are estimated
using the instrumental variable (IV) method on data set ze. The estimated
models are simulated using the inputs from data set zv. The normalized
quadratic fit between the simulated output and the measured output in zv is
formed and returned in v. The rows below the first row in v are the transpose
of NN, and the last row contains the logarithms of the condition numbers of the
IV matrix

A large condition number indicates that the structure is of unnecessarily high
order (see page 498 in Ljung (1999)).

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed. For
the use of maxsize, see Algorithm Properties.

The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained are
stable. The output-error fit calculated in v can then be misleading.

ς t()ϕT t()∑

ivstruc

4-134

Examples Compare the effect of different orders and delays, using the same data set for
both the estimation and validation.

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z,nn);

Algorithm A maximum-order ARX model is computed using the least squares method.
Instruments are generated by filtering the input(s) through this model. The
models are subsequently obtained by operating on submatrices in the
corresponding large IV matrix.

See Also arxstruc, iv4, n4sid, selstruc, struc

ivx

4-135

4ivxPurpose Estimate parameters of ARX model using the instrumental variable (IV)
method with arbitrary instruments

Syntax m = ivx(data,orders,x)
m = ivx(data,orders,x,maxsize)

Description ivx is a routine analogous to the iv4 routine, except that you can use arbitrary
instruments. These are contained in the matrix x. Make this the same size as
the output, data.y. In particular, if data contains several experiments, x must
be a cell array with one matrix/vector for each experiment. The instruments
used are then analogous to the regression vector itself, except that y is replaced
by x.

Note that ivx does not return any estimated covariance matrix for m, since that
requires additional information. m is returned as an idpoly object for
single-output systems and as an idarx object for multioutput systems.

Use iv4 as the basic IV routine for ARX model structures. The main interest in
ivx lies in its use for nonstandard situations, for example, when there is
feedback present in the data, or when other instruments need to be tried out.
Note that there is also an IV version that automatically generates instruments
from certain filters you define (type help iv).

References Ljung (1999), page 222.

See Also iv4, ivar

iv4

4-136

4iv4Purpose Estimate ARX model using four-stage instrumental variable method

Syntax m = iv4(data,orders)
m = iv4(data,'na',na,'nb',nb,'nk',nk)
m= iv4(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description This function is an alternative to arx and the use of the arguments is entirely
analogous to the arx function. The main difference is that the procedure is not
sensitive to the color of the noise term in the model equation.

For an interpretation of the loss function (innovations covariance matrix), see
“Interpretation of the Loss Function” on page 3-109.

Examples Here is an example of a two-input, one-output system with different delays on
the inputs and .

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

Algorithm The first stage uses the arx function. The resulting model generates the
instruments for a second-stage IV estimate. The residuals obtained from this
model are modeled as a high-order AR model. At the fourth stage, the
input-output data is filtered through this AR model and then subjected to the
IV function with the same instrument filters as in the second stage.

For the multioutput case, optimal instruments are obtained only if the noise
sources at the different outputs have the same color. The estimates obtained
with the routine are reasonably accurate, however, even in other cases.

References Ljung (1999), equations (15.21) through (15.26).

See Also arx, oe

e t()

u1 u2

LTI Commands

4-137

4LTI CommandsPurpose Allow direct calls to LTI commands from idmodel objects (requires Control
System Toolbox)

Syntax append, augstate, balreal, canon, d2d, feedback, inv, minreal,
modred, norm, parallel, series, ss2ss

Description If you have the Control System Toolbox, most of the relevant LTI commands,
listed above, can be directly applied to any idmodel (idarx, idgrey, idpoly,
idss). You can also use the overloaded operations +, -, and *. The same
operations are performed and the result is delivered as an idmodel. The
original covariance information is lost most of the time, however.

Examples You have two more or less identical processes connected in series. Estimate a
model for one of them, and use that to form an initial estimate for a model of
the connected process.

m = pem(data) % data concerns one of the processes
m2 = pem(data2,m*m) % data2 is from the whole connected process

merge (iddata)

4-138

4merge (iddata)Purpose Merge data sets into one iddata object

Syntax dat = merge(dat1,dat2,....,datN)

Description dat collects the data sets in dat1,.. datN into one iddata object, with several
experiments. The number of experiments in dat will be the sum of the number
of experiments in datk. For the merging to be allowed, a number of conditions
must be satisfied:

• All of datk must have the same number of input channels, and the
InputNames must be the same.

• All of datk must have the same number of output channels, and the
OutputNames must be the same. If some input or output channel is lacking in
one experiment, it can be replaced by a vector of NaNs to conform with these
rules.

• If the ExperimentNames of datk have been specified as something other than
the default 'Exp1', 'Exp2', etc., they must all be unique. If default names
overlap, they are modified so that dat will have a list of unique
ExperimentNames.

The sampling intervals, the number of observations, and the input properties
(Period, InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp.
You can also retrieve them by subreferencing with a fourth index.

dat1 = dat(:,:,:,ExperimentNumber) or

dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful for
handling experimental data that has been collected on different occasions, or
when a data set has been split up to remove “bad” portions of the data. All the
toolbox’s routines accept multiple-experiment data.

Examples Bad portions of data have been detected around sample 500 and between
samples 720 to 730. Cut out these bad portions and form a multiple-experiment
data set that can be used to estimate models without the bad data destroying
the estimate.

dat = merge(dat(1:498),dat(502:719),dat(719:1000))

merge (iddata)

4-139

m = pem(dat)

Use the first two parts to estimate the model and the third one for validation.

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

See also iddemo #9.

See Also iddata, getexp

merge (idmodel)

4-140

4merge (idmodel)Purpose Merge estimated models

Syntax m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description The models m1,m2,...,mN must all be of the same structure, just differing in
parameter values and covariance matrices. Then m is the merged model, where
the parameter vector is a statistically weighted mean (using the covariance
matrices to determine the weights) of the parameters of mk.

When two models are merged,

[m, tv] = merge(m1,m2)

returns a test variable tv. It is distributed with n degrees of freedom, if the
parameters of m1 and m2 have the same means. Here n is the length of the
parameter vector. A large value of tv thus indicates that it might be
questionable to merge the models.

Merging models is an alternative to merging data sets and estimating a model
for the merged data. Consequently,

m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

lead to models ma and mb that are related and should be close. The difference is
that merging the data sets assumes that the signal-to-noise ratios are about
the same in the two experiments. Merging the models allows one model to be
much more uncertain, for example, due to more disturbances in that
experiment. If the conditions are about the same, we recommend that you
merge data rather than models, since this is more efficient and typically
involves better conditioned calculations.

χ2

midprefs

4-141

4midprefsPurpose Set directory for storing idprefs.mat containing GUI startup information

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables for
customized choices. These include the window layout, the default choices of
plot options, and names and directories of the four most recent sessions with
ident. This information is stored in the file idprefs.mat, which should be
placed on the user’s MATLABPATH. The default, automatic location for this file is
in the same directory as the user’s startup.m file.

midprefs is used to select or change the directory where you store
idprefs.mat. Either type midprefs and follow the instructions, or give the
directory name as the argument. Include all directory delimiters, as in the PC
case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX case

midprefs('/home/ljung/matlab/')

See Also ident

misdata

4-142

4misdataPurpose Reconstruct missing input and output data

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

Description Data is time-domain input-output data in the iddata object format. Missing
data samples (both in inputs and in outputs) are entered as NaNs.

Datae is an iddata object where the missing data has been replaced by
reasonable estimates.

Model is any idmodel (idarx, idgrey, idpoly, idss) used for the reconstruction
of missing data.

If no suitable model is known, it is estimated in an iterative fashion using
default order state-space models.

Maxiter is the maximum number of iterations carried out (the default is 10).
The iterations are terminated when the difference between two consecutive
data estimates differs by less than tol%. The default value of tol is 1.

Algorithm For a given model, the missing data is estimated as parameters so as to
minimize the output prediction errors obtained from the reconstructed data.
See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is
not the best approach from a statistical point of view, but is a good
approximation in many cases.

When no model is given, the algorithm alternates between estimating missing
data and estimating models, based on the current reconstruction.

nkshift

4-143

4nkshiftPurpose Shift data sequences

Syntax Datas = nkshift(Data,nk)

Description Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels in
Data.

Datas is an iddata object where the input channels in Data have been shifted
according to nk. A positive value of nk(ku) means that input channel number
ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For
frequency-domain data it multiplies with to obtain the same effect as
shifting in the time domain. For continuous-time frequency-domain data
(Ts = 0), nk should be interpreted as the shift in seconds.

nkshift lives in symbiosis with the InputDelay property of idmodel:

m1 = pem(dat,4,'InputDelay',nk)

is related to

m2 = pem(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay information
for use when frequency responses, etc., are computed.

Note the difference from the idss and idpoly property nk.

m3 = pem(dat,4,'nk',nk)

gives a model that itself explicitly contains a delay of nk samples.

See Also idss, Algorithm Properties

einkωT

noisecnv

4-144

4noisecnvPurpose Convert idmodel with noise channels to model with only measured channels

Syntax mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'norm')

Description mod is any idmodel, idarx, idgrey, idpoly, or idss.

The noise input channels in mod are converted as follows: Consider a model
with both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance = . The
model can also be described with unit variance, normalized noise source v:

• mod1 = noisecnv(mod) converts the model to a representation of the system
[G H] with nu+ny inputs and ny outputs. All inputs are treated as measured,
and mod1 does not have any noise model. The former noise input channels
have names e@yname, where yname is the name of the corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a representation of the
system [G HL] with nu+ny inputs and ny outputs. All inputs are treated as
measured, and mod2 does not have any noise model. The former noise input
channels have names v@yname, where yname is the name of the corresponding
output. Note that the noise variance matrix factor L typically is uncertain
(has a nonzero covariance). This is taken into account in the uncertainty
description of mod2.

• If mod is a time series, that is, nu = 0, mod1 is a model that describes the
transfer function H with measured input channels. Analogously, mod2
describes the transfer function HL.

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

noisecnv

4-145

Note the difference with subreferencing:

• mod('m') gives a description of G only.

• mod('n') gives a description of the noise model characteristics as a
time-series model, that is, it describes H and also the covariance of e. In
contrast, noisecnv(m('n')) describes just the transfer function H. To obtain
a description of the normalized transfer function HL, use
noisecnv(m('n'),'norm')

Converting the noise channels to measured inputs is useful to study the
properties of the individual transfer functions from noise to output. It is also
useful for transforming idmodel objects to representations that do not handle
disturbance descriptions explicitly.

nuderst

4-146

4nuderstPurpose Set step size for numerical differentiation

Syntax nds = nuderst(pars)

Description The function pem uses numerical differentiation with respect to the model
parameters when applied to state-space structures. The same is true for many
functions that transform model uncertainties to other representations.

The step size used in these numerical derivatives is determined by the M-file
nuderst. The output argument nds is a row vector whose kth entry gives the
increment to be used when differentiating with respect to the kth element of
the parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the
maximum of times the absolute value of the current parameter and .
You can adjust this to the actual value of the corresponding parameter by
editing nuderst. Note that the nominal value, for example 0, of a parameter
might not reflect its normal size.

10 4– 10 7–

nyquist

4-147

4nyquistPurpose Plot Nyquist curve of frequency function with confidence regions

Syntax nyquist(m)
[fr,w] = nyquist(m)
[fr,w,covfr] = nyquist(m)
nyquist(m1,m2,m3,...,w)
nyquist(m1,'PlotStyle1',m2,'PlotStyle2',...)
nyquist(m1,m2,m3,..'sd*5',sd,'mode',mode)

Description nyquist computes the complex-valued frequency response of idmodel and
idfrd models. When invoked without left-hand arguments, nyquist produces
a Nyquist plot on the screen, that is, a graph of the frequency response’s
imaginary part against its real part.

The argument m is an arbitrary idmodel or idfrd model. This model can be
continuous or discrete, and SISO or MIMO. The InputNames and OuputNames
of the models are used to plot the responses for different I/O channels in
separate plots. Pressing the Enter key advances the plot from one input-output
pair to the next one. You can select specific I/O channels with normal
subreferencing: m(ky,ku). With mode = 'same', all plots are given in the same
diagram.

nyquist(m,w) explicitly specifies the frequency range or frequency points to be
used for the plot. To focus on a particular frequency interval [wmin,wmax], set
w = {wmin,wmax}. (Notice the curly brackets.) To use particular frequency
points, set w to the vector of desired frequencies. Use logspace to generate
logarithmically spaced frequency vectors. All frequencies should be specified in
rad/s.

nyquist(m1,m2,...,mN) or nyquist(m1,m2,...mN,w) plots the Bode
responses of several idmodels or idfrd models on a single figure. The models
can be mixes of different sizes, and continuous or discrete. The sorting of the
plots is based on the InputNames and OutputNames.

nyquist(m1,'PlotStyle1',...,mN,'PlotStyleN') further specifies which
color, line style, and/or marker should be used to plot each system, as in

nyquist(m1,'r--',m2,'gx')

When sd is specified as a number larger than zero, confidence regions are also
plotted. These are ellipses in the complex plane and correspond to the region

nyquist

4-148

where the true response at the frequency in question is to be found with a
confidence corresponding to sd standard deviations (of the Gaussian
distribution).

If the argument indicating standard deviations is given as in 'sd+5', a
confidence region is plotted for every 5:th frequency, marking the center point
by '+'. The default is 'sd+10'.

Note that the frequencies cannot be specified for idfrd objects. For those, the
plot and response are calculated for the internally stored frequencies. If the
frequencies w are specified when several models are treated, they will apply to
all non-idfrd models in the list. If you want different frequencies for different
models, you should first convert them to idfrd objects using the idfrd
command.

For time-series models (no input channels), the Nyquist plot is not defined.

Arguments When nyquist is called with a single system and output arguments,

fr = nyquist(m,w) or [fr,w,covfr] = nyquist(m)

no plot is drawn on the screen. If m has ny outputs and nu inputs, and w contains
Nw frequencies, then fr is an ny-by-nu-by-Nw array such that fr(ky,ku,k) gives
the complex-valued frequency response from input ku to output ky at the
frequency w(k). For a SISO model, use fr(:) to obtain a vector of the frequency
response. The uncertainty information covfr is a 5-D array where
covfr(ky,ku,k,:,:)) is the 2-by-2 covariance matrix of the response from
input ku to output ky at frequency w(k). The 1,1 element is the variance of the
real part, the 2,2 element is the variance of the imaginary part, and the 1,2 and
2,1 elements are the covariance between the real and imaginary parts.

squeeze(covfr(ky,ku,k,:,:)) gives the covariance matrix of the
corresponding response.

If m is a time series (no input), fr is returned as the (power) spectrum of the
outputs, an ny-by-ny-by-Nw array. Hence fr(:,:,k) is the spectrum matrix at
frequency w(k). The element fr(k1,k2,k) is the cross spectrum between
outputs k1 and k2 at frequency w(k). When k1 = k2, this is the real-valued
power spectrum of output k1. The covfr is then the covariance of the spectrum
fr, so that covfr(k1,k1,k) is the variance of the power spectrum of output k1
at frequency w(k). No information about the variance of the cross spectra is
normally given. (That is, covfr(k1,k2,k) = 0 for k1 not equal to k2.)

nyquist

4-149

If the model m is not a time series, use fr = nyquist(m('n')) to obtain the
spectrum information of the noise (output disturbance) signals.

Examples g = spa(data)
m = n4sid(data,3)
nyquist(g,m,3)

See Also bode, etfe, ffplot, idfrd, spa

n4sid

4-150

4n4sidPurpose Estimate state-space models using subspace method

Syntax m = n4sid(data)
m = n4sid(data,order,'Property1',Value1,...,'PropertyN',ValueN)

Description The function n4sid estimates models in state-space form and returns them as
an idss object m. It handles an arbitrary number of input and outputs,
including the time-series case (no input). The state-space model is in the
innovations form

m: The resulting model as an idss object.

If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state-space model is estimated.

data: An iddata object containing the output-input data. Both time-domain
and frequency-domain signals are supported. data can also be a frd or idfrd
frequency-response data object.

order: The desired order of the state-space model. If order is entered as a row
vector (as in order = [1:10]), preliminary calculations for all the indicated
orders are carried out. A plot is then given that shows the relative importance
of the dimension of the state vector. More precisely, the singular values of the
Hankel matrices of the impulse response for different orders are graphed. You
are prompted to select the order, based on this plot. The idea is to choose an
order such that the singular values for higher orders are comparatively small.
If order = 'best', a model of “best” (default choice) order is computed among
the orders 1:10. This is the default choice of order.

Estimating the D Matrix
Whether the D matrix is estimated or not is governed by the property nk, which
is further described below. The default is that D is not estimated. By setting
the kth entry of nk to 0, the kth column of D (corresponding to the kth input) is
estimated. To estimate a full D matrix thus, let nk = zeros(1,nu) as in

m = n4sid(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

x t Ts+() Ax t() Bu t() Ke t()+ +=
y t() Cx t() Du t() e t()+ +=

n4sid

4-151

Property Name/Property Value Pairs
The list of property name/property value pairs can contain any idss and
algorithm properties. See idss and Algorithm Properties.

idss properties that are of particular interest for n4sid are

• nk: For time-domain data, this gives delays from the inputs to the outputs, a
row vector with the same number of entries as the number of input channels.
Default is nk = [1 1... 1]. Note that delays of 0 or 1 show up as zeros or
estimated parameters in the D matrix. Delays larger than 1 mean that a
special structure of the A, B, and C matrices is used to accommodate the
delays. This also means that the actual order of the state-space model will be
larger than order. For continuous-time models estimated from
continuous-time (frequency-domain) data, the elements of nk are restricted
to the values 1 and 0.

• CovarianceMatrix (can be abbreviated to 'co'): Setting CovarianceMatrix
to 'None' blocks all calculations of uncertainty measures. These can take the
major part of the computation time. Note that, for a 'Free'
parameterization, the individual matrix elements cannot be associated with
any variance. (These parameters are not identifiable.) Instead, the resulting
model m stores a hidden state-space model in canonical form that contains
covariance information. This is used when the uncertainty of various
input-output properties is calculated. It can also be retrieved by
m.ss = 'can'. The actual covariance properties of n4sid estimates are not
known today. Instead the Cramer-Rao bound is computed and stored as an
indication of the uncertainty.

• DisturbanceModel: Setting DisturbanceModel to 'None' will deliver a
model with K = 0. This has no direct effect on the dynamics model other than
that the default choice of N4Horizon will not involve past outputs.

• InitialState: The initial state is always estimated for better accuracy.
However, it is returned with m only if InitialState = 'Estimate'.

Algorithm properties that are of special interest are

• Focus: Assumes the values 'Prediction' (default), 'Simulation',
'Stability', passbands, or any SISO linear filter (given as an LTI or
idmodel object, or as filter coefficients. See Algorithm Properties.) Setting
'Focus' to 'Simulation' chooses weights that should give a better
simulation performance for the model. In particular, a stable model is

n4sid

4-152

guaranteed. Selecting a linear filter focuses the fit to the frequency ranges
that are emphasized by this filter.

• N4Weight: This property determines some weighting matrices used in the
singular-value decomposition that is a central step in the algorithm. Two
choices are offered: 'MOESP', corresponding to the MOESP algorithm by
Verhaegen, and 'CVA', which is the canonical variable algorithm by
Larimore. The default value is 'N4Weight' = 'Auto', which gives an
automatic choice between the two options. m.EstimationInfo.N4Weight
tells you what the actual choice turned out to be.

• N4Horizon: Determines the prediction horizons forward and backward used
by the algorithm. This is a row vector with three elements:
N4Horizon = [r sy su], where r is the maximum forward prediction
horizon. That is, the algorithm uses up to r step-ahead predictors. sy is the
number of past outputs, and su is the number of past inputs that are used for
the predictions. See pages 209 and 210 in Ljung (1999) for the exact meaning
of this. These numbers can have a substantial influence on the quality of the
resulting model, and there are no simple rules for choosing them. Making
'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried,
and the value that gives the best (prediction) fit to data is selected. (This
option cannot be combined with selection of model order.) If the property
'Trace' is 'On', information about the results is given in the MATLAB
Command Window.

If you specify only one column in 'N4Horizon', the interpretation is r=sy=su.
The default choice is 'N4Horizon' = 'Auto', which uses an Akaike
Information Criterion (AIC) for the selection of sy and su. If
'DisturbanceModel' = 'None', sy is set to 0. Typing
m.EstimationInfor.N4Horizon will tell you what the final choices of
horizons were.

Algorithm The variants of the implemented algorithm are described in Section 10.6 in
Ljung (1999).

Examples Build a fifth-order model from data with three inputs and two outputs. Try
several choices of auxiliary orders. Look at the frequency response of the model.

z = iddata([y1 y2],[u1 u2 u3]);
m = n4sid(z,5,'n4h',[7:15]','trace','on');
bode(m,'sd',3)

n4sid

4-153

Estimate a continuous-time model, in a canonical form parameterization,
focusing on the simulation behavior. Determine the order yourself after seeing
the plot of singular values.

m = n4sid(m,[1:10],'foc','sim','ssp','can','ts',0)
bode(m)

References vanOverschee, P., and B. DeMoor, Subspace Identification of Linear Systems:
Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.

Verhaegen, M., “Identification of the deterministic part of MIMO state space
models,” Automatica, Vol. 30, pp. 61-74, 1994.

Larimore, W.E., “Canonical variate analysis in identification, filtering and
adaptive control,” In Proc. 29th IEEE Conference on Decision and Control,
pp. 596-604, Honolulu, 1990.

See Also idss, pem, Algorithm Properties

oe

4-154

4oePurpose Estimate parameters of output-error model

Syntax m = oe(data,orders)
m = oe(data,'nb',nb,'nf',nf,'nk',nk)
m = oe(data,orders,'Property1',Value1,'Property2',Value2,...)

Description oe returns m as an idpoly object with the resulting parameter estimates,
together with estimated covariances. The parameters of the output-error model
structure

are estimated using a prediction error method.

data is an iddata object containing the output-input data. Both time- and
frequency-domain data are supported. Moreover, data can be an frd or idfrd
frequency-response data object.

The structure information can either be given explicitly as

(...,'nb',nb,'nf',nf,'nk',nk,...)

or in the argument orders, given as

orders = [nb nf nk]

The parameters nb and nf are the orders of the output-error model and nk is
the delay. Specifically,

Alternatively, you can specify the vector as

orders = mi

where mi is an initial guess at the output-error model given in idpoly format.
See “Polynomial Representation of Transfer Functions” on page 3-11.

y t() B q()
F q()
------------u t nk–() e t()+=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nf: F q() 1 f+ 1q 1– … fnfq
nf–+ +=

oe

4-155

For multiinput systems, nb, nf, and nk are row vectors with as many entries as
there are input channels. Entry number i then describes the orders and delays
associated with the ith input.

Continuous-Time Models
If data is continuous-time (frequency-domain) data, oe estimates a
continuous-time model with transfer function

The orders of the numerator and denominator are thus determined by nb and
nf just as in the discrete-time case. However, the delay nk has no meaning and
should be omitted. For multiinput systems, nb and nf are row vectors with
obvious interpretation.

Properties
The structure and the estimation algorithm are affected by any property
name/property value pairs that are set in the input argument list. Useful
properties are 'Focus', 'InitialState', 'InputDelay', 'SearchDirection',
'MaxIter', 'Tolerance', 'LimitError', 'FixedParameter', and 'Trace'.

See Algorithm Properties, idpoly, and idmodel for details of these properties
and their possible values.

oe does not support multioutput models. Use a state-space model for this case
(see n4sid and pem).

Algorithm oe uses essentially the same algorithm as armax, with modifications to the
computation of prediction errors and gradients.

Examples Suppose fast sampled data (Ts = 0.001) is available from a plant with a
bandwidth of about 500 rad/s. The data is treated as continuous-time
frequency-domain data, and a model of the type

is estimated.

G s() B s()
F s()

bnbs nb 1–() bnb 1– s nb 2–() … b1+ + +

snf fnfs
nf 1–() … f1+ + +

---= =

G s() b

s3 f1s2 f2s f3+ + +
--=

oe

4-156

z = iddata(y,u,0.001);
zf = fft(z);
zf.ts = 0;
m = oe(zf,[1 3],'foc',[0 500])

See Also armax, bj, idpoly, pem

pe

4-157

4pePurpose Compute prediction errors associated with model and data set

Syntax e = pe(m,data)
[e,x0] = pe(m,data,init)

Description data is the output-input data set, given as an iddata object, and m is any
idmodel object. Both time-domain and frequency-domain data are supported,
and data can also be an idfrd object.

e is returned as an iddata object, so that e.OutputData contains the prediction
errors that result when model m is applied to the data.

 The argument init determines how to deal with the initial conditions:

• init = 'e(stimate)' means that the initial state is chosen so that the norm
of prediction error is minimized. This initial state is returned as x0.

• init = ̀ d(elayexpand)': Same as ‘estimate’, but for a model with nonzero
InputDelay, the delays are first converted to explicit model delays (using
inpd2nk) so that they are contained in x0.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0i, where x0i is a column vector of appropriate dimension, uses that
value as initial state. For multiexperiment data, x0i may be a matrix whose
columns give different initial states for each experiment. Notice that for a
continuous-time model m, x0 is the initial state for this model. Any
modifications of the initial state that sampling might require are
automatically handled. If m has a non-zero InputDelay, and you need to
access the values of the inputs during this delay, you must first apply
inpd2nk(m). If m is continuous in time, it must first be sampled before
inpd2nk can be applied.

If init is not specified, the model property m.InitialState is used, so that
'Estimate', 'Backcast', and 'Auto' set init = 'Estimate', while
m.InitialState = 'Zero' sets init = 'zero', and 'Fixed' and 'Model' set
init = 'model'.

e t() H 1– q() y t() G q()u t()–[]=

pe

4-158

The output argument x0 is the value of the initial state used. If data contains
several experiments, x0 is a matrix containing the initial states from each
experiment.

See Also idmodel, resid

pem

4-159

4pemPurpose Estimate parameters of general linear models

Syntax m = pem(data)
m = pem(data,mi)
m = pem(data,mi,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(data,orders)
m = pem(data,'P1D')
m = pem(data,'nx',ssorder)
m = pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = pem(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

Description pem is the basic estimation command in the toolbox and covers a variety of
situations.

data is always an iddata object that contains the input/output data. Both
time-domain and frequency-domain signals are supported. data can also be an
frd or idfrd frequency-response data object. Estimation of noise models (K in
state-space models and A, C, and D in polynomial models) is not supported for
frequency-domain data.

With Initial Model
mi is any idmodel object, idarx, idpoly, idproc, idss, or idgrey. It could be a
result of another estimation routine, or constructed and modified by the
constructors (idarx, idpoly, idss, idgrey, idproc) and set. The properties of
mi can also be changed by any property name/property value pairs in pem as
indicated in the syntax.

m is then returned as the best fitting model in the model structure defined by
mi. The iterative search is initialized at the parameters of the initial/nominal
model mi. m will be of the same class as mi.

Black-Box State-Space Models
With m = pem(data,n), where n is a positive integer, or m = pem(data,'nx',n),
a state-space model of order n is estimated.

x t Ts+() Ax t() Bu t() Ke t()+ +=
y t() Cx t() Du t() e t()+ +=

pem

4-160

If data is continuous-time (frequency-domain) data, a corresponding
continuous-time state space model is estimated.

The default is that it is estimated in a 'Free' parameterization that can be
further modified by the properties 'nk', 'DisturbanceModel', and
'InitialState' (see the reference pages for idss and n4sid). The model is
initialized by n4sid and then further adjusted by optimizing the prediction
error fit.

You can choose among several different orders by

m = pem(data,'nx',[n1,n2,...nN])

and you are then prompted for the “best” order. By

m = pem(data,'best')

an automatic choice of order among 1:10 is made.

m = pem(data)

is short for m = pem(data,'best'). To work with other delays, use, for
example, m = pem(data,'best','nk',[0,...0]).

In this case m is returned as an idss model.

Estimating the D, K, and X0 Matrices
Whether the D matrix is estimated or not is governed by the property nk, which
is further described below. The default is that D is not estimated. By setting
the kth entry of nk to 0, the kth column of D (corresponding to the kth input) is
estimated. To estimate a full D matrix, let nk = zeros(1,nu), as in

m = pem(data,order,'nk',[0 .. 0])

This holds for both discrete- and continuous-time models.

For frequency-domain data, K is always fixed to 0. For time-domain data, K is
estimated by default. To fix K to 0 in this case, use

m = pem(data,order,'DisturbanceModel','none')

Similarily, X0 is estimated if 'InitialState' is set to 'Estimate', and fixed to
0 if 'InitialState' is set to 'Zero'.

pem

4-161

Black-Box Multiple-Input-Single-Output Models
The function pem also handles the general multiple-input-single-output
structure

The orders of this general model are given either as

orders = [na nb nc nd nf nk]

or with (...'na',na,'nb',nb,...) as shown in the syntax. Here na, nb, nc,
nd, and nf are the orders of the model, and nk is the delay(s). For multiinput
systems, nb, nf, and nk are row vectors giving the orders and delays of each
input. (See “Polynomial Representation of Transfer Functions” on page 3-11 for
exact definitions of the orders.) When the orders are specified with separate
entries, those not given are taken as zero.

For frequency-domain data, only estimation of B and F is supported. It is
simpler to use oe in that case.

In this case m is returned as an idpoly object.

Continuous-Time Process Models
Entering for the initial model an acronym for a process model, as in

m = pem(data,'P2UI')

will estimate a continuous-time process model of the indicated type. See the
reference page for Purpose for details of possible model types and associated
property name/property value pairs.

In this case m is returned as an idproc model.

Properties In all cases the algorithm is affected by the properties (see Algorithm
Properties for details):

• Focus, with possible values 'Prediction' (default), 'Simulation', or a
passband range.

• MaxIter and Tolerance govern the stopping criteria for the iterative search.

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–() …

Bnu q()
Fnu q()
-------------------unu t nknu–() C q()

D q()
-------------e t()+ + +=

pem

4-162

• LimitError deals with how the criterion can be made less sensitive to
outliers and bad data.

• MaxSize determines the largest matrix ever formed by the algorithm. The
algorithm goes into for loops to avoid larger matrices, which can be more
efficient than using virtual memory.

• Trace, with possible values 'Off', 'On', and 'Full', governs the
information sent to the MATLAB Command Window.

For black-box state-space models, 'N4Weight' and 'N4Horizon' will also affect
the result, since these models are initialized with an n4sid estimate. See the
reference page for n4sid.

Typical idmodel properties are (see idmodel properties for more details)

• Ts is the sampling interval. Set 'Ts' = 0 to obtain a continuous-time
state-space model. For discrete-time models, 'Ts' is automatically set to the
sampling interval of the data. Note that, in the black-box case, it is usually
better to first estimate a discrete-time model, and then convert that to
continuous time using d2c.

• nk is the time delays from the inputs (not applicable to structured state-space
models). Time delays specified by 'nk' will be included in the model.

• DisturbanceModel determines the parameterization of K for free and
canonical state-space parameterizations, as well as for idgrey models. It also
determines whether a noise model should be included for idproc models.

• InitialState: The initial state can have a substantial influence on the
estimation result for systems with slow responses. It is most pronounced for
output-error models (K = 0 for state-space and na = nc = nd = 0 for
input/output models). The default value 'Auto' estimates the influence of
the initial state and sets the value to 'Estimate', 'Backcast', or 'Zero'
based on this effect. Possible values of 'InitialState' are 'Auto',
'Estimate', 'Backcast', 'Zero', and 'Fixed'. See “Initial State” on
page 3-100.

Examples Here is an example of a system with three inputs and two outputs. A canonical
form state-space model of order 5 is sought.

z = iddata([y1 y2],[u1 u2 u3]);
m = pem(z,5,'ss','can')

Building an ARMAX model for the response to output 2,

pem

4-163

ma = pem(z(:,2,:),'na',2,'nb',[2 3 1],'nc',2,'nk',[1 2 0])

Comparing the models (compare automatically matches the channels using the
channel names),

compare(z,m,ma)

Algorithm pem uses essentially the same algorithm as armax, with modifications to the
computation of prediction errors and gradients.

See Also armax, bj, oe, idss, idpoly, idgrey, idmodel, Algorithm Properties,
EstimationInfo

pexcit

4-164

4pexcitPurpose Determine level of excitation of input signals

Syntax Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description Data is an iddata object with time- or frequency-domain signals.

Ped is the degree or order of excitation of the inputs in Data. A row vector of
integers with as many components as there are inputs in Data. The intuitive
interpretation of the degree of excitation in an input is the order of a model that
the input is capable of estimating in an unambiguous way.

Maxnr is the maximum order tested. Default is min(N/3,50), where N is the
number of input data.

Threshold is the threshold level used to measure which singular values are
significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).

See Also iddata, advice

plot (iddata)

4-165

4plot (iddata)Purpose Plot input-output iddata

Syntax plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)

Description data is the output-input data to be graphed, given as an iddata object. A split
plot is obtained with the outputs on top and the inputs at the bottom.

One plot for each I/O channel combination is produced. Pressing the Enter key
advances the plot. Typing Ctrl+C aborts the plotting in an orderly fashion.

To plot a specific interval, use plot(data(200:300)). To plot specific
input/output channels, use plot(data(:,ky,ku)), consistent with the
subreferencing of iddata objects (see iddata).

If data.intersample = 'zoh', the input is piecewise constant between
sampling points, and it is then graphed accordingly.

To plot several iddata sets d1,...,dN, use plot(d1,...,dN). I/O channels
with the same experiment name, input name, and output name are always
plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can be
specified

plot(d1,'y:*',d2,'b')

just as in the regular plot command.

See Also iddata

plot (idmodel)

4-166

4plot (idmodel)Purpose Plot idmodel properties using LTI viewer in Control Systems Toolbox

Syntax See view.

polydata

4-167

4 polydataPurpose Convert model to input-output polynomials

Syntax [A,B,C,D,F] = polydata(m)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(m)

Description This is essentially the inverse of the idpoly constructor. It returns the
polynomials of the general model

as contained in the model m.

dA, dB, etc. are the standard deviations of A, B, etc.

m can be any single-output idmodel, that is, not just idpoly. For multioutput
models you can use [A,B,C,D,F] = polydata(m(ky,:)) to obtain the
polynomials for the kyth output.

See Also idmodel, idpoly, tfdata

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–() …

Bnu q()
Fnu q()
-------------------unu t nknu–() C q()

D q()
-------------e t()+ + +=

predict

4-168

4predictPurpose Predict output k steps ahead

Syntax yp = predict(m,data)
[yp,x0p,mpred] = predict(m,data,k,'InitialState',init)

Description data is the output-input data as an iddata object, and m is any idmodel object
(idpoly, idproc, idss, idgrey, or idarx). predict is meaningful only for
time-domain data.

The argument k indicates that the k step-ahead prediction of y according to the
model m is computed. In the calculation of yp(t), the model can use outputs up
to time

and inputs up to the current time t. The default value of k is 1.

The output yp is an iddata object containing the predicted values as
OutputData.

x0p is the used (estimated) initial state vector. For multiexperiment data, x0p
is a matrix, whose columns contain the initial states for each experiment.

The output argument mpred contains the k step-ahead predictor. This is given
as a cell array, whose kth entry is an idpoly model for the predictor of output
number k. Note that these predictor models have as input both input and
output signals in the data set. The channel names indicate how the predictor
model and the data fit together.

init determines how to deal with the initial state:

• init ='e(stimate)': The initial state is set to a value that minimizes the
norm of the prediction error associated with the model and the data.

• init = ̀ d(elayexpand)': Same as ‘estimate’, but for a model with nonzero
InputDelay, the delays are first converted to explicit model delays (using
inpd2nk) so that they are contained in x0p.

• init = 'z(ero)' sets the initial state to zero.

• init = 'm(odel)' uses the model’s internally stored initial state.

• init = x0, where x0 is a column vector of appropriate dimension, uses that
value as initial state. For multiexperiment data, x0 can be a matrix whose
columns give different initial states for each experiment. Notice that for a

t k– :y s() s t= k t k– 1–, …,–,

predict

4-169

continuous-time model m, x0 is the initial state for this model. Any
modifications of the initial state that sampling might require are
automatically handled. If m has a non-zero InputDelay, and you need to
access the values of the inputs during this delay, you must first apply
inpd2nk(m). When m is a continuous-time model, it must first be sampled
before inpd2nk can be applied.

If init is not specified, the model property m.InitialState is used, so that
'Estimate', 'Backcast', and 'Auto' set init = 'Estimate', while
m.InitialState = 'Zero' sets init = 'zero', and 'Model' and 'Fixed' set
init = 'model'.

An important use of predict is to evaluate a model’s properties in the
mid-frequency range. Simulation with sim (which conceptually corresponds to
k = inf) can lead to levels that drift apart, since the low-frequency behavior is
emphasized. One step-ahead prediction is not a powerful test of the model’s
properties, since the high-frequency behavior is stressed. The trivial predictor

 can give good predictions in case the sampling of the data is
fast.

Another important use of predict is to evaluate time-series models. The
natural way of studying a time-series model’s ability to reproduce observations
is to compare its k step-ahead predictions with actual data.

Note that for output-error models, there is no difference between the k
step-ahead predictions and the simulated output, since, by definition,
output-error models only use past inputs to predict future outputs.

Algorithm The model is evaluated in state-space form, and the state equations are
simulated k steps ahead with initial value , where is
the Kalman filter state estimate.

Examples Simulate a time series, estimate a model based on the first half of the data, and
evaluate the four step-ahead predictions on the second half.

m0 = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
y = sim(m0,e);
m = armax(y(1:200),[1 2]);
yp = predict(m,y,4);
plot(y(201:400),yp(201:400))

ŷ t() y t 1–()=

x t k–() x̂ t k–()= x̂ t k–()

predict

4-170

Note that the last two commands are also achieved by

compare(y,m,4,201:400);

See Also compare, sim, pe

present

4-171

4presentPurpose Display information in idmodel model, including uncertainty

Syntax present(m)

Description The present function displays the model m, together with the estimated
standard deviations of the parameters, loss function, and Akaike’s Final
Prediction Error (FPE) Criterion (which essentially equals the AIC). It also
displays information about how m was created.

present thus gives more detailed information about the model than the
standard display function.

pzmap

4-172

4pzmapPurpose Plot zeros and poles with confidence regions

Syntax pzmap(m)
pzmap(m,'sd',sd)
pzmap(m1,m2,m3,...)
pzmap(m1,'PlotStyle1',m2,'PlotStyle2',...,'sd',sd)
pzmap(m1,m2,m3,..,'sd',sd,'mode',mode,'axis',axis)

Description m is any idmodel object: idarx, idgrey, idss, idproc, or idpoly.

The zeros and poles of m are graphed, with o denoting zeros and x denoting
poles. Poles and zeros at infinity are ignored. For discrete-time models, zeros
and poles at the origin are also ignored.

The Property/Value pairs `sd'/sd, `mode'/mode and `axis'/axis can
appear in any order. They are explained below.

If sd has a value larger than zero, confidence regions around the poles and
zeros are also graphed. The regions corresponding to sd standard deviations
are marked. The default value is sd = 0. Note that the confidence regions
might sometimes stretch outside the plot, but they are always symmetric
around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is
also drawn. For continuous-time models, the real and imaginary axes are
drawn.

When mi contains information about several different input/output channels,
you have the following options:

mode = 'sub' splits the screen into several plots, one for each input/output
channel. These are based on the InputName and OutputName properties
associated with the different models.

mode = 'same' gives all plots in the same diagram. Pressing the Enter key
advances the plots.

mode = 'sep' erases the previous plot before the next channel pair is treated.

The default value is mode = 'sub'.

axis = [x1 x2 y1 y2] fixes the axis scaling accordingly. axis = s is the same
as

pzmap

4-173

axis = [-s s -s s]

You can select the colors associated with the different models by using the
argument PlotStyle. Use PlotStyle = 'b', 'g', etc. Markers and line styles
are not used.

The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v.

Then,

• pzmap(m) plots the zeros and poles of the transfer function G.

• pzmap(m('n')) plots the zeros and poles of the transfer function H (ny inputs
and ny outputs). The input channels have names e@yname, where yname is
the name of the corresponding output.

• If m is a time series, that is nu = 0, pzmap(m) plots the zeros and poles of the
transfer function H.

• pzmap(noisecnv(m)) plots the zeros and poles of the transfer function [G H]
(nu+ny inputs and ny outputs). The noise input channels have names
e@yname, where yname is the name of the corresponding output.

• pzmap(noisecnv(m,'norm')) plots the zeros and poles of the transfer
function [G HL] (nu+ny inputs and ny outputs). The noise input channels
have names v@yname, where yname is the name of the corresponding output.

Examples mbj = bj(data,[2 2 1 1 1]);
mar = armax(data,[2 2 2 1]);
pzmap(mbj,mar,'sd',3)

shows all zeros and poles of two models along with the confidence regions
corresponding to three standard deviations.

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

pzmap

4-174

See Also idmodel, zpkdata

rarmax

4-175

4rarmaxPurpose Estimate recursively parameters of ARMAX or ARMA model

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the delay.
Specifically,

See “Polynomial Representation of Transfer Functions” on page 3-11 for more
information.

If z represents a time series y and nn = [na nc], rarmax estimates the
parameters of an ARMA model for y.

Only single-input, single-output models are handled by rarmax. Use rpem for
the multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm
contains the parameters associated with time k; that is, they are based on the
data in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order:

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

A q()y t() B q()u t nk–() C q()e t()+=

na: A q() 1 a1q 1– … anaq na–+ + +=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nc: C q() 1 c1q 1– … cncq nc–+ + +=

A q()y t() C q()e t()=

rarmax

4-176

yhat is the predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row
vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of
phi0 and psi0 is to use the outputs from a previous call to rarmax with the
same model orders. (This call could be a dummy call with default input
arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44), (11.47) through
(11.49) of Ljung (1999) is implemented. See “Recursive Parameter Estimation”
on page 3-86 for more information.

Examples Compute and plot, as functions of time, the four parameters in a second-order
ARMA model of a time series given in the vector y. The forgetting factor
algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

rarx

4-177

4rarxPurpose Estimate recursively parameters of ARX or AR model

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description The parameters of the ARX model structure

are estimated using different variants of the recursive least squares method.

The input-output data is contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the delay.
Specifically,

See (Equation 3-13) in Chapter 3, “Tutorial,” for more information.

If z is a time series y and nn = na, rarx estimates the parameters of an AR
model for y.

Models with several inputs

are handled by allowing u to contain each input as a column vector,

u = [u1 ... unu]

and by allowing nb and nk to be row vectors defining the orders and delays
associated with each input.

Only single-output models are handled by rarx.

A q()y t() B q()u t nk–() e t()+=

na: A q() 1 a1q 1– … anaq na–+ + +=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

A q()y t() e t()=

A q()y t() B1 q()u1 t nk1–() …Bnuunu t nknu–() e t()+ +=

rarx

4-178

The estimated parameters are returned in the matrix thm. The kth row of thm
contains the parameters associated with time k; that is, they are based on the
data in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

In the case of a multiinput model, all the b parameters associated with input
number 1 are given first, and then all the b parameters associated with input
number 2, and so on.

yhat is the predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These
are described in “Recursive Parameter Estimation” on page 3-86. The options
are as follows:

• With adm = 'ff' and adg = lam the forgetting factor algorithm
(Equation 3-65abd) and (Equation 3-67) is obtained with forgetting factor
= lam. This is what is often referred to as recursive least squares (RLS). In

this case the matrix P has the following interpretation: /2 ∗ P is
approximately equal to the covariance matrix of the estimated parameters.
Here is the variance of the innovations (the true prediction errors e(t) in
(Equation 3-62).

• With adm ='ug' and adg = gam, the unnormalized gradient algorithm
(Equation 3-65abc) and (Equation 3-68) is obtained with gain gamma = gam.
This algorithm is commonly known as normalized least mean squares
(LMS).

• Similarly, adm ='ng' and adg = gam give the normalized gradient or
normalized least mean squares (NLMS) algorithm (Equation 3-65abc) and
(Equation 3-69). In these cases, P is not defined or applicable.

• With adm ='kf' and adg = R1, the Kalman filter based algorithm
(Equation 3-65) is obtained with R2= 1 and R1 = R1. If the variance of the
innovations e(t) is not unity but ; then ∗ P is the covariance matrix of
the parameter estimates, while = R1 / is the covariance matrix of the
parameter changes in (Equation 3-63).

• The input argument th0 contains the initial value of the parameters, a row
vector consistent with the rows of thm. The default value of th0 is all zeros.

λ
R2

R2

R2 R2
R1 R2

rarx

4-179

• The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. The default value of P0 is 104
times the identity matrix.

• The arguments phi0 and phi contain initial and final values, respectively, of
the data vector.

Then, if

z = [y(1),u(1); ... ;y(N),u(N)]

you have phi0 = and phi = . The default value of phi0 is all zeros.
For online use of rarx, use phi0, th0, and P0 as the previous outputs phi, thm
(last row), and P.

Note that the function requires that the delay nk be larger than 0. If you want
nk = 0, shift the input sequence appropriately and use nk = 1. See nkshift.

Examples Adaptive noise canceling: The signal y contains a component that has its origin
in a known signal r. Remove this component by estimating, recursively, the
system that relates r to y using a sixth-order FIR model together with the
NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If the above application is a true online one, so that you want to plot the best
estimate of the signal y - noise at the same time as the data y and u become
available, proceed as follows.

phi = zeros(6,1); P=1000∗eye(6);
th = zeros(1,6); axis([0 100 -2 2]);
plot(0,0,'∗'), hold on
% The loop:
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'∗')

ϕ t() y t 1–() … y t na–() u t 1–() …u t nb– nk– 1+(), , , ,[]=

ϕ 1() ϕ N()

rarx

4-180

time = time +Dt
end

This example uses a forgetting factor algorithm with a forgetting factor of 0.98.
readAD represents an M-file that reads the value of an A/D converter at the
indicated time instant.

rbj

4-181

4rbjPurpose Estimate recursively parameters of Box-Jenkins model

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = ... rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Box-Jenkins model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and nk is the
delay. Specifically,

See “Polynomial Representation of Transfer Functions” on page 3-11 for more
information.

Only single-input, single-output models are handled by rbj. Use rpem for the
multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm
contains the parameters associated with time k; that is, they are based on the
data in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

y t() B q()
F q()
------------u t nk–() C q()

D q()
-------------e t()+=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nc: C q() 1 c1q 1– … cncq nc–+ + +=

nd: D q() 1 d1q 1– … dndq nd–+ + +=

nf: F q() 1 f1q 1– … fnfq
nf–+ + +=

rbj

4-182

yhat is the predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row
vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of
phi0 and psi0 is to use the outputs from a previous call to rbj with the same
model orders. (This call could be a dummy call with default input arguments.)
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1900) is
implemented. See also “Recursive Parameter Estimation” on page 3-86.

realdata

4-183

4realdataPurpose Determine whether iddata is based on real-valued signals

Syntax realdata(data)

Description realdata returns 1 if

• data contains only real-valued signals.

• data contains frequency-domain signals, obtained by Fourier transformation
of real-valued signals.

Otherwise realdata returns 0.

Notice the difference with isreal:

load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1

resample

4-184

4resamplePurpose Resample data by interpolation and decimation

Syntax datar = resample(data,P,Q)
datar = resample(data,P,Q,,filter_order)

Description data: The data to be resampled, given as an iddata object

datar: The resampled data returned as an iddata object

P, Q: Integers that determine the resampling factor. The new sampling interval
will be Q/P times the original one, so resample(z,1,Q) means decimation with
a factor Q.

filter_order: Determines the order of the presampling filters used before
interpolation and decimation. Default is 10.

Algorithm If the Signal Processing Toolbox is available, the resampling is achieved by
calls to the resample function in that toolbox. The intersample character of the
input, as described by data.InterSample, is taken into account.

Otherwise, use the function datar = idresamp(data,R), where R=Q/P. Then
the data is interpolated by a factor P and then decimated by a factor Q. The
interpolation and decimation are preceded by prefiltering, and follow the same
algorithms as in the routines interp and decimate in the Signal Processing
Toolbox.

Examples Resample by increasing the sampling rate by a factor of 1.5 and compare the
signals.

plot(u)
ur = resample(u,3,2);
plot(u,ur)

resid

4-185

4residPurpose Compute and test model residuals (prediction errors)

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

Description data contains the output-input data as an iddata object. Both time-domain
and frequency-domain data are supported. data can also be an idfrd object.

m is the model to be evaluated on the given data set. It is any idmodel object.

In all cases the residuals e associated with the data and the model are
computed. This is done as in the command pe with a default choice of init.

When called without output arguments, resid produces a plot. The plot can be
of three kinds depending on the argument Type:

• Type = 'Corr' (only available for time-domain data): The autocorrelation
function of e and the cross correlation between e and the input(s) u are
computed and displayed. The 99% confidence intervals for these values are
also computed and shown as a yellow region. The computation of the
confidence region is done assuming e to be white and independent of u. The
functions are displayed up to lag M, which is 25 by default.

• Type = 'ir': The impulse response (up to lag M, which is 25 by default) from
the input to the residuals is plotted with a 99% confidence region around zero
marked as a yellow area. Negative lags up to M/4 are also included to
investigate feedback effects. (The result is the same as
impulse(e,'sd',2.58,'fill',M).)

• Type = 'fr': The frequency response from the input to the residuals (based
on a high-order FIR model) is shown as a Bode plot. A 99% confidence region
around zero is also marked as a yellow area.

The default for time-domain data is Type = 'Corr'. For frequency-domain
data, the default is Type = 'fr'.

With an output argument, no plot is produced, and e is returned with the
residuals (prediction errors) associated with the model and the data. It is an
iddata object with the residuals as outputs and the input in data as inputs.
That means that e can be directly used to build model error models, that is,

resid

4-186

models that describe the dynamics from the input to the residuals (which
should be negligible if m is a good description of the system).

See “Model Structure Selection and Validation” on page 3-70 for more
information.

Examples Here are some typical model validation commands.

e = resid(m,data);
plot(e)
compare(data,m);

To compute a model error model, that is, a model to input to the residuals to
see if any essential unmodeled dynamics are left, do the following:

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,fill')

References Ljung (1999), Section 16.6.

See Also compare, idgrey, idarx, idpoly, idproc, idss, pem

roe

4-187

4roePurpose Estimate output-error models (IIR-filters) recursively

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the output-error model structure

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the delay.
Specifically,

See “Polynomial Representation of Transfer Functions” on page 3-11 for more
information.

Only single-input, single-output models are handled by roe. Use rpem for the
multiinput case.

The estimated parameters are returned in the matrix thm. The kth row of thm
contains the parameters associated with time k; that is, they are based on the
data in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]

yhat is the predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These
are described under rarx.

y t() B q()
F q()
------------u t nk–() e t()+=

nb: B q() b1 b+ 2q 1– … bnbq nb– 1++ +=

nf: F q() 1 f1q 1– … fnfq
nf–+ + +=

roe

4-188

The input argument th0 contains the initial value of the parameters, a row
vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of
phi0 and psi0 is to use the outputs from a previous call to roe with the same
model orders. (This call could be a dummy call with default input arguments.)
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999) is
implemented. See also “Recursive Parameter Estimation” on page 3-86.

See Also oe, rarx, rbj, rplr, rpem, nkshift

rpem

4-189

4rpemPurpose Estimate general input-output models using recursive prediction error method

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. (In the multiinput case, u
contains one column for each input.) nn is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For
multiinput systems, nb, nf, and nk are row vectors giving the orders and delays
of each input. See “Polynomial Representation of Transfer Functions” on
page 3-11 for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm
contains the parameters associated with time k; that is, they are based on the
data in the rows up to and including row k in z. Each row of thm contains the
estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
 c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiinput systems, the B part in the above expression is repeated for each
input before the C part begins, and the F part is also repeated for each input.
This is the same ordering as in m.par.

yhat is the predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These
are described under rarx.

The input argument th0 contains the initial value of the parameters, a row
vector consistent with the rows of thm. The default value of th0 is all zeros.

A q()y t()
B1 q()
F1 q()
---------------u1 t nk1–() …

Bnu q()
Fnu q()
------------------- unu t nknu–() C q()

D q()
-------------e t()+ + +=

rpem

4-190

The arguments P0 and P are the initial and final values, respectively, of the
scaled covariance matrix of the parameters. See rarx. The default value of P0
is 104 times the unit matrix. The arguments phi0, psi0, phi, and psi contain
initial and final values of the data vector and the gradient vector, respectively.
The sizes of these depend on the chosen model orders. The normal choice of
phi0 and psi0 is to use the outputs from a previous call to rpem with the same
model orders. (This call could be a dummy call with default input arguments.)
The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you want
nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithm The general recursive prediction error algorithm (11.44) of Ljung (1999) is
implemented. See also “Recursive Parameter Estimation” on page 3-86.

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA,
Box-Jenkins, and output-error models, it is more efficient to use rarx, rarmax,
rbj, and roe.

See Also pem, rarmax, rarx, rbj, roe, rplr, nkshift

rplr

4-191

4rplrPurpose Estimate general input-output models using recursive pseudolinear regression
method

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax. See
rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation. See
Section 11.5 in Ljung (1999). Several of the special cases are well-known
algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr gives the
extended least squares (ELS) method. When applied to the output-error
structure (nn = [0 nb 0 0 nf nk]), the method is known as HARF in the
adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA model is
estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

See Also pem, rarmax, rarx, rbj, roe, rpem

segment

4-192

4segmentPurpose Segment data and estimate models for each segment

Syntax segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA type,

assuming that the model parameters are piecewise constant over time. It
results in a model that has split the data record into segments over which the
model remains constant. The function models signals and systems that might
undergo abrupt changes.

The input-output data is contained in z, which is either an iddata object or a
matrix z = [y u] where y and u are column vectors. If the system has several
inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials. See
“Polynomial Representation of Transfer Functions” on page 3-11. Moreover, nk
is the delay. If the model has several inputs, nb and nk are row vectors, giving
the orders and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

The output argument segm is a matrix, whose k row contains the parameters
corresponding to time k. This is analogous to the output argument thm in rarx
and rarmax. The output argument thm of segment contains the corresponding
model parameters that have not yet been segmented. That is, they are not

A q()y t() B q()u t nk–() C q()e t()+=

segment

4-193

piecewise constant, and therefore correspond to the outputs of the functions
rarmax and rarx. In fact, segment is an alternative to these two algorithms,
and has a better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction errors of the
segmented model. It is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t) in the
model. The default value of R2, R2 = [], is that it is estimated. Then the output
argument R2e is a vector whose kth element contains the estimate of R2 at time
k.

The argument q is the probability that the model undergoes at an abrupt
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they occur.
The default value is the identity matrix with dimension equal to the number of
estimated parameters.

M is the number of parallel models used in the algorithm (see below). Its default
value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the initial
covariance matrix of the parameters. The default is 10 times the identity
matrix.

ll is the guaranteed life of each of the models. That is, any created candidate
model is not abolished until after at least ll time steps. The default is ll = 1.
Mu is a forgetting parameter that is used in the scheme that estimates R2. The
default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust to
have a reasonable guess of R2 than to estimate it. Typically, you need to try
different values of R2 and evaluate the results. (See the example below.)
sqrt(R2) corresponds to a change in the value y(t) that is normal, giving no
indication that the system or the input might have changed.

segment

4-194

Algorithm The algorithm is based on M parallel models, each recursively estimated by an
algorithm of Kalman filter type. Each is updated independently, and its
posterior probability is computed. The time-varying estimate thm is formed by
weighting together the M different models with weights equal to their posterior
probability. At each time step the model (among those that have lived at least
11 samples) that has the lowest posterior probability is abolished. A new model
is started, assuming that the system parameters have jumped, with probability
q, a random jump from the most likely among the models. The covariance
matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior
probability is tracked back and the time instances where it jumped are marked.
This defines the different segments of the data. (If no models had been
abolished in the algorithm, this would have been the maximum likelihood
estimates of the jump instances.) The segmented model segm is then formed by
smoothing the parameter estimate, assuming that the jump instances are
correct. In other words, the last estimate over a segment is chosen to represent
the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant levels.
Then use a very simple model y(t) = b1 * 1, where 1 is a fake input and
describes the piecewise constant level of the signal y(t) (which is simulated as
a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(size(y))],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels are
created as R2 decreases.

b1

selstruc

4-195

4selstrucPurpose Select model order (structure)

Syntax nn = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description selstruc is a function to help choose a model structure (order) from the
information contained in the matrix v obtained as the output from arxstruc or
ivstruc.

The default value of c is 'plot'. The plot shows the percentage of the output
variance that is not explained by the model as a function of the number of
parameters used. Each value shows the best fit for that number of parameters.
By clicking in the plot you can examine which orders are of interest. When you
click 'Select', the variable nn is returned in the workspace as the optimal
model structure for your choice of number of parameters. Several choices can
be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes
Akaike’s Information Criterion (AIC),

where V is the loss function, d is the total number of parameters in the
structure in question, and N is the number of data points used for the
estimation. See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s Minimum
Description Length (MDL) criterion.

When c equals a numerical value, the structure that minimizes

is selected.

The output argument vmod has the same format as v, but it contains the
logarithms of the accordingly modified criteria.

Vmod V 1 2d
N
-------+⎝ ⎠

⎛ ⎞=

Vmod V 1 d N()log
N

----------------------+⎝ ⎠
⎛ ⎞=

Vmod V 1 cd
N
------+⎝ ⎠

⎛ ⎞=

selstruc

4-196

Examples V = arxstruc(data(1:200),data(201:400),struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)

set

4-197

4setPurpose Set properties of models and iddata sets

Syntax set(m,'Property',Value)
set(m,'Property1',Value1,...'PropertyN',ValueN)
set(m,'Property')
set(m)

Description set is used to set or modify the properties of any of the objects in the toolbox
(iddata, idmodel, idgrey, idarx, idpoly, idss). See the corresponding
reference pages for a complete list of properties.

set(m,'Property',Value) assigns the value Value to the property of the
object m specified by the string 'Property'. This string can be the full property
name (for example, 'SSParameterization') or any unambiguous
case-insensitive abbreviation (for example, 'ss').

set(m,'Property1',Value1,...'PropertyN',ValueN) sets multiple
properties with a single statement. In certain cases this might be necessary,
since the model m must, for example, have state-space matrices of consistent
dimensions after each set statement.

set(m,'Property') displays admissible values for the property specified by
'Property'.

set(m) displays all assignable values of m and their admissible values.

The same result is also obtained by subassignment.

m.Property = Value

setstruc

4-198

4setstrucPurpose Set matrix structure for idss objects

Syntax setstruc(M,As,Bs,Cs,Ds.Ks,X0s)
setstruc(M,Mods)

Description setstruc(M,As,Bs,Cs,Ds.Ks,X0s)

is the same as

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)

Use empty matrices for structure matrices that should not be changed. You can
omit trailing arguments.

In the alternative syntax, Mods is a structure with fieldnames As, Bs, etc., with
the corresponding values of the fields.

See Also idss

setpname

4-199

4setpnamePurpose Set mnemonic parameter names for black-box model structures

Syntax model = setpname(model)

Description model is an idmodel object of idarx, idpoly, idproc, or idss type. The returned
model has the 'PName' property set to a cell array of strings that correspond to
the symbols used in this manual to describe the parameters.

For single-input idpoly models, the parameters are called
'a1', 'a2', ...,'fn', as defined in “Polynomial Representation of Transfer
Functions” on page 3-11.

For multiinput idpoly models, the b and f parameters have the output/input
channel number in parentheses, as in 'b1(1,2)', 'f3(1,2)', etc.

For idarx models, the parameter names are as in '-A(ky,ku)' for the negative
value of the ky-ku entry of the matrix in (Equation 3-50) and similarly for the
B parameters.

For idss models, the parameters are named for the matrix entries they
represent, such as 'A(4,5)', 'K(2,3)', etc.

For idproc models, the parameter names are as described under idproc.

This function is particularly useful when certain parameters are to be fixed.
See the property FixedParameter under Algorithm Properties.

sim

4-200

4simPurpose Simulate linear models with confidence regions

Syntax y = sim(m,u)
y = sim(m,u,'noise')
[y, ysd] = sim(m,u,'InitialState',init)

Description m is an arbitrary idmodel object.

u is an iddata object, containing inputs only. (Any outputs are ignored). Both
time-domain and frequency-domain signals are supported. The number of
input channels in u must either be equal to the number of inputs of the model
m or equal to the sum of the number of inputs and noise sources (number of
outputs). In the latter case the last inputs in u are regarded as noise sources
and a noise-corrupted simulation is obtained. The noise is scaled according to
the property m.NoiseVariance in m. To obtain the right noise level according to
the model, the noise inputs should be white noise with zero mean and unit
covariance matrix. A simpler way of obtaining a noise-corrupted simulation
with Gaussian noise is to add the argument `noise'. If no noise sources are
contained in u, a noise-free simulation is obtained. sim applies both to
time-domain and frequency-domain iddata objects, but no standard
deviations are obtained for frequency-domain signals.

sim returns y, containing the simulated output, as an iddata object.

init gives access to the initial states:

• init = 'm' (default) uses the internally stored initial state of model m.

• init = 'z' uses zero initial state.

• init = x0, where x0 is a column vector of appropriate length, uses this value
as the initial state. For multi-experiment inputs, x0 has as many columns as
there are experiments to allow for different initial conditions. Notice that for
a continuous-time model m, x0 is the initial state for this model. Any
modifications of the initial state that sampling might require are
automatically handled. If m has a non-zero InputDelay, and you need to
access the values of the inputs during this delay, you must first apply
inpd2nk(m). If m is a continuous-time model, it must first be sampled before
inpd2nk can be applied.

The second output argument ysd is the standard deviation of the simulated
output. This is not available for frequency-domain data.

sim

4-201

u can also be given as a matrix with the number of columns being either the
number of inputs in m or the sum of the number of inputs and outputs. Then y
and ysd are returned as matrices. Continuous-time models, however, require u
to be given as iddata.

If m is a continuous-time model, it is first converted to discrete time with the
sampling interval given by ue, taking into account the intersample behavior of
the input (ue.InterSample). See “Discrete- and Continuous-Time Models” on
page 3-68.

Examples Simulate a given system m0 (for example, created by idpoly).

e = iddata([],randn(500,1));
u = iddata([],idinput(500,'prbs'));
y = sim(m0,[u e]);
z = [y u]; % An iddata object with y as output and u as input.

The same result is obtained by

u = iddata([],idinput(500,'prbs'));
y = sim(m0,u,'noise');
z = [y u];

or

u = idinput(500,'prbs');
y = sim(m0,u,'noise');
z = iddata(y,u);

Validate a model by comparing a measured output y with one simulated using
an estimated model m.

yh = sim(m,u);
plot(y,yh)

See Also iddata, idpoly, idarx, idss, idgrey, simsd

simsd

4-202

4simsdPurpose Simulate models with uncertainty using Monte Carlo method

Syntax simsd(m,u)
simsd(m,u,N,'noise',Ky)
[y,ysd] = simsd(m,u)

Description u is an iddata object containing the inputs. m is a model given as any idmodel
object. N random models are created according to the covariance information
given in m. The responses of each of these models to the input u are computed
and graphed in the same diagram. If the argument 'noise' is included, noise
is added to the simulation in accordance with the noise model of m and its own
uncertainty. Ky denotes the output numbers to be plotted. (The default is all).

The default value is N=10.

 With output arguments

[y,ysd] = simsd(m,u)

No plots are produced, but y is returned as a cell array with the simulated
outputs, and ysd is the estimated standard deviation of y, based on the N
different simulations. If u is an iddata object, so are the contents of the cells of
y and ysd; otherwise, they are returned as vectors/matrices. In the iddata case,

plot(y{:})

thus plots all the responses.

sim and simsd have similar syntaxes. Note that simsd computes the standard
deviation by Monte Carlo simulation, while sim uses differential
approximations (the Gauss approximation formula). They might give different
results.

Examples Plot the step response of the model m and evaluate how it varies in view of the
model’s uncertainty.

step1 = [zeros(5,1); ones(20,1)];
simsd(m,step1)

See Also sim

size

4-203

4sizePurpose Dimensions of iddata, idmodel, and idfrd objects

Syntax d = size(m)
[ny,nu,Npar,Nx] = size(model)
[N, ny, nu, Nexp] = size(data)
ny = size(data,2)
ny = size(data,'ny')
size(model)
size(idfrd_object)

Description size describes the dimensions of iddata, idmodel, and idfrd objects.

iddata
For iddata objects, the sizes returned are, in this order,

• N = the length of the data record. For multiple-experiment data, N is a row
vector with as many entries as there are experiments.

• ny = the number of output channels.

• ny = the number of input channels.

• Ne = the number of experiments.

To access just one of these sizes, use size(data,k) for the kth dimension or
size(data,'N'), size(data,'ny'), etc.

When called with one output argument, d = size(data) returns

• d = [N ny nu] if the number of experiments is 1.

• d = [sum(N) ny nu Ne] if the number of experiments is Ne > 1.

idmodel
For idmodel objects the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Npar = the length of the ParameterVector (number of estimated
parameters).

• Nx = the number of states for idss and idgrey models.

size

4-204

In this case the individual dimensions are obtained by size(mod,2),
size(mod,'Npar'), etc.

When size is called with one output argument, d = size(mod), d is given by

 [ny nu Npar]

idfrd
For idfrd models, the sizes returned are, in this order,

• ny = the number of output channels.

• nu = the number of input channels.

• Nf = the number of frequencies.

• Ns = the number of spectrum channels.

In this case the individual dimensions are obtained by size(mod,2),
size(mod,'Nf'), etc.

When size is called with one output argument, d = size(fre), d is given by

[ny nu Nf Ns]

When size is called with no output arguments, in any of these cases, the
information is displayed in the MATLAB Command Window.

spa

4-205

4spaPurpose Estimate frequency response and spectrum using spectral analysis

Syntax g = spa(data)
g = spa(data,M,w,maxsize)
[g,phi,spe] = spa(data)

Description spa estimates the transfer function g and the noise spectrum of the general
linear model

where is the spectrum of .

data contains the output-input data as an iddata object. The data can be
complex valued. data can be both time domain and frequency domain. data can
also be an idfrd object.

g is returned as an idfrd object (see idfrd) with the estimate of at the
frequencies specified by row vector w. The default value of w is

w = [1:128]/128∗pi/Ts

Here Ts is the sampling interval of data.

g also includes information about the spectrum estimate of at the same
frequencies. Both outputs are returned with estimated covariances, included in
g. See idfrd.

M is the length of the lag window used in the calculations. The default value is

M = min(30,length(data)/10)

Changing the value of M controls the frequency resolution of the estimate. The
resolution corresponding to M is approximately /M rad/sampling interval. The
value of M exchanges bias for variance in the spectral estimate. As M is
increased, the estimated functions show more detail, but are more corrupted by
noise. The sharper peaks a true frequency function has, the higher M it needs.
See etfe as an alternative for narrowband signals and systems. The function
spafdr allows the frequency resolution to depend on the frequency. See also
“Estimating Spectra and Frequency Functions” on page 3-15.

maxsize controls the memory-speed tradeoff (see Algorithm Properties).

Φv

y t() G q()u t() v t()+=

Φv ω() v t()

G eiω()
ω

Φv ω()

π

spa

4-206

For time series, where data contains no input channels, g is returned with the
estimated output spectrum and its estimated standard deviation.

When spa is called with two or three output arguments,

• g is returned as an idfrd model with just the estimated frequency response
from input to output and its uncertainty.

• phi is returned as an idfrd model, containing just the spectrum data for the
output spectrum and its uncertainty.

• spe is returned as an idfrd model containing spectrum data for all
output-input channels in data. That is, if z = [data.OutputData,
data.InputData], spe contains as spectrum data the matrix-valued power
spectrum of z.

Here win(m) is weight at lag m of an M-size Hamming window and W is the
frequency value i rad/s. Note that ' denotes complex-conjugate transpose.

The normalization of the spectrum differs from the one used by spectrum in the
Signal Processing Toolbox. See “Spectrum Normalization and the Sampling
Interval” on page 3-107 for a more precise definition.

Examples With default frequencies,

g = spa(z);
bode(g)

With logarithmically spaced frequencies,

w = logspace(-2,pi,128);
g= spa(z,[],w); % (empty matrix gives default)
bode(g,'sd',3)
bode(g('noise'),'sd',3) % The noise spectrum with confidence
interval of 3 standard deviations.

Φv ω()

S Ez t m+()z t()′ iWmT–()exp win m()

m M–=

M

∑=

spa

4-207

Algorithm The covariance function estimates are computed using covf. These are
multiplied by a Hamming window of lag size M and then transformed using a
Fourier transform. The relevant ratios and differences are then formed. For the
default frequencies, this is done using a fast Fourier transform, which is more
efficient than for user-defined frequencies. For multivariable systems, a
straightforward for loop is used.

Note that M = is in Table 6.1 of Ljung (1999). The standard deviations are
computed as on pages 184 and 188 in Ljung (1999).

See Also bode, etfe, idfrd, nyquist, spafdr

γ

spafdr

4-208

4 spafdrPurpose Estimate frequency response and spectrum using spectral analysis with
frequency-dependent resolution

Syntax g = spafdr(data)
g = spafdr(data,Resol,w)

Description spafdr estimates the transfer function g and the noise spectrum of the
general linear model

where is the spectrum of .

data contains the output-input data as an iddata object. The data can be
complex valued, and either time or frequency domain. It can also be an idfrd
object containing frequency-response data.

g is returned as an idfrd object (see idfrd) with the estimate of at the
frequencies specified by row vector w. g also includes information about the
spectrum estimate of at the same frequencies. Both results are returned
with estimated covariances, included in g. See idfrd. The normalization of the
spectrum is the same as described under spa.

Frequencies
The frequency variable w is either specified as a row vector of frequencies, or as
a cell array {wmin,wmax}. In the latter case the covered frequencies will be 50
logarithmically spaced points from wmin to wmax. You can change the number
of points to NP by entering {wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value, which is
100 logarithmically spaced frequencies between the smallest and largest
frequency in data. For time-domain data, this means from 1/N*Ts to pi*Ts,
where Ts is the sampling interval of data and N is the number of data.

Resolution
The argument Resol defines the frequency resolution of the estimates. The
resolution (measured in rad/s) is the size of the smallest detail in the frequency
function and the spectrum that is resolved by the estimate. The resolution is a
tradeoff between obtaining estimates with fine, reliable details, and suffering
from spurious, random effects: The finer the resolution, the higher the variance

Φv

y t() G q()u t() v t()+=

Φv ω() v t()

G eiω()
ω

Φv ω()

spafdr

4-209

in the estimate. Resol can be entered as a scalar (measured in rad/s), which
defines the resolution over the whole frequency interval. It can also be entered
as a row vector of the same length as w. Then Resol(k) is the local,
frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the empty
matrix, is Resol(k) = 2(w(k+1)-w(k)), adjusted upwards, so that a
reasonable estimate is guaranteed. In all cases, the resolution is returned in
the variable g.EstimationInfo.WindowSize.

Algorithm If the data is given in the time domain, it is first converted to the frequency
domain. Then averages of Y(w)Conj(U(w)) and U(w)Conj(U(w)) are formed
over the frequency ranges w, corresponding to the desired resolution around the
frequency in question. The ratio of these averages is then formed for the
frequency-function estimate, and corresponding expressions define the noise
spectrum estimate.

See Also bode, etfe, idfrd, nyquist, spa

ss

4-210

4ssPurpose Convert idmodel objects of System Identification Toolbox to LTI models of
Control System Toolbox

Syntax sys = ss(mod)
sys = ss(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.

sys is returned as an ss LTI model object. The noise input channels in mod are
treated as follows: consider a model mod with both measured input channels u
(nu channels) and noise channels e (ny channels) with covariance matrix

Both measured input channels u and normalized noise input channels v in mod
are input channels in sys. The noise input channels belong to the InputGroup
'Noise', while the others belong to the InputGroup 'Measured'. The names of
the noise input channels are v@yname, where yname is the name of the
corresponding output channel. This means that the LTI object realizes the
transfer function [G HL].

To transform only the measured input channels in sys, use

sys = ss(mod('m')) or sys = ss(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI
representations in ss contains the transfer functions from the normalized noise
sources v to the outputs, that is, HL. If the model mod has both measured and
noise inputs, sys = ss(mod('n')) gives a representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = ss(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are
assigned the names e@yname.

Λ

y Gu HLv+=
cov v() I=

ss

4-211

See Also frd, tf, zpk

ssdata

4-212

4ssdataPurpose Convert model to state-space form

Syntax [A,B,C,D,K,X0] = ssdata(m)
[A,B,C,D,K,X0,dA,dB,dC,dD,dK,dX0] = ssdata(m)

Description m is the model given as any idmodel object. A, B, C, D, K, and X0 are the matrices
in the state-space description

where is or depending on whether m is a continuous-time or
discrete-time model.

dA, dB, dC, dD, dK, and dX0 are the standard deviations of the state-space
matrices.

If the underlying model itself is a state-space model, the matrices correspond
to the same basis. If the underlying model is an input-output model, an
observer canonical form representation is obtained.

For a time-series model (no measured input channels, u = []), B and D are
returned as the empty matrices.

Subreferencing models in the usual way (see idmodel properties) will give the
state-space representation of the chosen channels. Notice in particular that

[A,B,C,D] = ssdata(m('m'))

gives the response from the measured inputs. This is a model without a
disturbance description. Moreover,

[A,B,C,D,K] = ssdata(m('n'))

('n' as in “noise”) gives the disturbance description, that is, a time-series
description of the additive noise with no measured inputs, so that B = [] and
D = [].

x̃ t() Ax t() Bu t() Ke t()+ +=

x 0() x0=

y t() Cx t() Dx t() e t()+ +=

x̃ t() x· t() x t Ts+()

ssdata

4-213

To obtain state-space descriptions that treat all input channels, both u and e,
as measured inputs, first apply the conversion

m = noisecnv(m)

or

m = noisecnv(m,'norm')

where the latter case first normalizes e to v, where v has a unit covariance
matrix. See the reference page for noisecnv.

Algorithm The computation of the standard deviations in the input-output case assumes
that an A polynomial is not used together with an F or D polynomial in
(Equation 3-43). For the computation of standard deviations in the case that
the state-space parameters are complicated functions of the parameters, the
Gauss approximation formula is used together with numerical derivatives. The
step sizes for this differentiation are determined by nuderst.

See Also idmodel, idss, nuderst

step

4-214

4stepPurpose Plot step response with confidence regions

Syntax step(m)
step(data)
step(m,'sd',sd,Time)
step(data,'sd',sd,'PW',na,Time)
step(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
step(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,mN,

'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = step(m)
mod = step(data)

Description step can be applied both to idmodels and to iddata sets, as well as to any
mixture.

For a discrete-time idmodel m, the step response y and, when required, its
estimated standard deviation ysd, are computed using sim. When called with
output arguments, y, ysd, and the time vector t are returned. When step is
called without output arguments, a plot of the step response is shown. If sd is
given a value larger than zero, a confidence region around the response is
drawn. It corresponds to the confidence of sd standard deviations. If the input
argument list contains 'fill', this region is plotted as a filled area.

Setting the Time Interval
The start time T1 and the end time T2 can be specified by Time = [T1 T2]. If
T1 is not given, it is set to -T2/4. The negative time lags (the step is always
assumed to occur at time 0) show possible feedback effects in the data when the
step is estimated directly from data. If Time is not specified, a default value is
used.

Estimating the Step Response from data
For an iddata set data, step(data) estimates a high-order, noncausal FIR
model after first having prefiltered the data so that the input is “as white as
possible.” The step response of this FIR model and, when asked for, its
confidence region, are then plotted. Note that it might not be possible always
to deliver the demanded time interval in this case, because of lack of excitation
in the data. A warning is then issued. When called with an output argument,
step, in the iddata case, returns this FIR model, stored as an idarx model. The

step

4-215

order of the prewhitening filter can be specified as na. The default value is
na = 10.

Several Models/Data Sets
Any number and any mixture of models and data sets can be used as input
arguments. The responses are plotted with each input/output channel (as
defined by the models and data sets InputName and OutputName) as a separate
plot. Colors, line styles, and marks can be defined by PlotStyle values, as in

step(m1,'b-*',m2,'y--',m3,'g')

Noise Channels
The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v:

• step(m) plots the step response of the transfer function G.

• step(m('n')) plots the step response of the transfer function H (ny inputs
and ny outputs).The input channels have names e@yname, where yname is the
name of the corresponding output.

• If m is a time series, that is, nu = 0, step(m) plots the step response of the
transfer function H.

• step(noisecnv(m)) plots the step response of the transfer function [G H]
(nu+ny inputs and ny outputs). The noise input channels have names
e@yname, where yname is the name of the corresponding output.

• step(noisecnv(m,'norm')) plots the step response of the transfer function
[G HL] (nu+ny inputs and ny outputs). The noise input channels have names
v@yname, where yname is the name of the corresponding output.

Arguments If step is called with a single idmodel m, the output argument y is a 3-D array
of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector t, ny is the

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

step

4-216

number of output channels, and nu is the number of input channels. Thus
y(:,ky,ku) is the response in the kyth output channel to a step in the kuth
input channel. No plot is produced when output arguments are used.

ysd has the same dimensions as y and contains the standard deviations of y.
This is normally computed using sim. However, when the model m contains an
estimated delay (dead time) as in certain process models, the standard
deviation is estimated with Monte Carlo techniques, using simsd.

If step is called with an output argument and a single data set in the input
arguments, the output is returned as an idarx model mod containing the
high-order FIR model, and its uncertainty. By calling step with mod, the
responses can be displayed and returned without your having to redo the
estimation.

Examples step(data,'sd',3) estimates and plots the step response

mod = step(data)
step(mod,'sd',3)

See Also cra, impulse

struc

4-217

4strucPurpose Generate model structure matrices

Syntax NN = struc(NA,NB,NK)

Description struc returns in NN the set of model structures composed of all combinations of
the orders and delays given in row vectors NA, NB, and NK. The format of NN is
consistent with the input format used by arxstruc and ivstruc. The command
is intended for single-input systems only.

Examples The statement

NN = struc(1:2,1:2,4:5);

produces

NN =
 1 1 4
 1 1 5
 1 2 4
 1 2 5
 2 1 4
 2 1 5
 2 2 5

See Also arxstruc, ivstruc, selstruc

tf

4-218

4tfPurpose Convert idmodel objects of System Identification Toolbox to transfer-function
LTI models of Control System Toolbox

Syntax sys = tf(mod)
sys = tf(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.

sys is returned as ta tf LTI model object. The noise input channels in mod are
treated as follows:

Consider a model mod with both measured input channels u (nu channels) and
noise channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. Notice that mod.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v.

Both measured input channels u and normalized noise input channels v in mod
are input channels in sys. The noise input channels belongs to the InputGroup
'Noise', while the others belong to the InputGroup 'Measured'. The names of
the noise input channels will be v@yname, where yname is the name of the
corresponding output channel. This means that the LTI object realizes the
transfer function [G HL].

To transform only the measured input channels in mod, use

sys = tf(mod('m')) or sys = tf(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI representation
contains the transfer functions from the normalized noise sources v to the
outputs, that is, HL. If the model mod has both measured and noise inputs, sys
= tf(mod('n')) gives a representation of the additive noise.

In addition, you can use normal subreferencing.

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

tf

4-219

sys = tf(mod(1,[3 4]))

If you want to describe [G H] or H (unnormalized noise), from e to y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are
assigned the names e@yname.

See Also frd, ss, zpk

tfdata

4-220

4tfdataPurpose Convert model to transfer-function form

Syntax [num,den] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and nu input
channels.

num is a cell array of dimension ny-by-nu. num{ky,ku} (note the curly brackets)
contains the numerator of the transfer function from input ku to output ky.
This numerator is a row vector whose interpretation is described below.

Similarly, den is an ny-by-nu cell array of the denominators.

sdnum and sdden have the same formats as num and den. They contain the
standard deviations of the numerator and denominator coefficients.

If m is a SISO model, adding an extra input argument 'v' (for vector) will
return num and den as vectors rather than cell arrays.

The formats of num and den are the same as those used by the Signal Processing
Toolbox and the Control System Toolbox, both for continuous-time and
discrete-time models. See “Examining Models” on page 3-57 and the examples
below.

The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v:

• tfdata(m) returns the transfer function G.

• tfdata(m('n')) returns the transfer function H (ny inputs and ny outputs).

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

tfdata

4-221

• If m is a time series, that is, nu = 0, tfdata(m) returns the transfer function
H.

• tfdata(noisecnv(m)) returns the transfer function [G H] (nu+ny inputs and
ny outputs).

• tfdata(noisecnv(m,'norm')) returns the transfer function [G HL] (nu+ny
inputs and ny outputs).

Examples For a continuous-time model,

num = [1 2]
den = [1 3 0]

corresponds to the transfer function

For a discrete-time model,

num = [2 4 0]
den = [1 2 3 5]

corresponds to the transfer function

which is the same as

Note that for discrete-time models, idpoly and polydata have a different
interpretation of the numerator vector, in case it does not have the same length
as the denominator vector. To avoid confusion, fill out with zeros to make
numerator and denominator vectors the same length. Do this with tfdata.

See Also idpoly, noisecnv

G s() s 2+

s2 3s+
------------------=

H z() 2z2 4z+

z3 2z2 3z 5+ + +
--=

H q() 2q 1– 4q 2–+

1 2q 1– 3q 2– 5q 3–+ + +
--=

timestamp

4-222

4timestampPurpose Return date and time when object was created or last modified

Syntax timestamp(obj)
ts = timestamp(obj)

Description obj is any idmodel, iddata, or idfrd object. timestamp returns or displays a
string with information about when the object was created and last modified.

view

4-223

4viewPurpose Plot model characteristics using LTI viewer in Control System Toolbox

Syntax view(m)
view(m('n'))
view(m1,...,mN,Plottype)
view(m1,PlotStyle1,...,mN,PlotStyleN)

Description m is the output-input data to be graphed, given as any idfrd or idmodel object.
After appropriate model transformations, the LTI viewer of the Control System
Toolbox is invoked. This allows bode, nyquist, impulse, step, and zero/poles
plots.

To compare several models m1,...,mN, use view(m1,...,mN). With PlotStyle,
the color, line style, and marker of each model can be specified.

view(m1,'y:*',m2,'b')

Adding Plottype as a last argument specifies the type of plot in which view is
initialized. Plottype is any of 'impulse', 'step', 'bode', 'nyquist',
'nichols', 'sigma', or 'pzmap'. It can also be given as a cell array containing
any collection of these strings (up to 6) in which case a multiplot is shown.

view does not display confidence regions. For that, use bode, nyquist, impulse,
step, and pzmap.

The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v:

• view(m) plots the characteristics of the transfer function G.

Λ

y Gu He+=

cov e() Λ LLT= =

Λ

y Gu HLv+=
cov v() I=

view

4-224

• view(m('n')) plots the characteristics of the transfer function HL (ny inputs
and ny outputs). The input channels have names v@yname, where yname is
the name of the corresponding output.

• If m is a time series, that is, nu = 0, view(m) plots the characteristics of the
transfer function HL.

• view(noisecnv(m)) plots the characteristics of the transfer function [G H]
(nu+ny inputs and ny outputs). The noise input channels have names
e@yname, where yname is the name of the corresponding output.

• view(noisecnv(m,'norm')) plots the characteristics of the transfer function
[G HL] (nu+ny inputs and ny outputs). The noise input channels have names
v@yname, where yname is the name of the corresponding output.

view does not give access to all of the features of ltiview. Use

ml = ss(m), ltiview(Plottype,ml,...)

to reach these options.

See Also bode, impulse, nyquist, step, pzmap

zpk

4-225

4zpkPurpose Convert idmodel objects of System Identification Toolbox to state-space LTI
models of Control System Toolbox

Syntax sys = zpk(mod)
sys = zpk(mod,'m')

Description mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.

sys is returned as a zpk LTI model object. The noise input channels in mod are
treated as follows: consider a model mod with both measured input channels u
(nu channels) and noise channels e (ny channels) with covariance matrix

where L is a lower triangular matrix. Note that mod.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v.

Both measured input channels u and normalized noise input channels v in mod
are input channels in sys. The noise input channels belongs to the InputGroup
'Noise', while the others belong to the InputGroup 'Measured'. The names of
the noise input channels are given by v@yname, where yname is the name of the
corresponding output channel. This means that the LTI object realizes the
transfer function [G HL].

To transform only the measured input channels in sys, use

sys = zpk(mod('m')) or sys = zpk(mod,'m')

This gives a representation of G only.

For a time series, (no measured input channels, nu = 0), the LTI representation
contains the transfer functions from the normalized noise sources v to the
outputs, that is, HL. If the model mod has both measured and noise inputs, sys
= zpk(mod('n')) gives a representation of the additive noise.

In addition, the normal subreferencing can be used.

sys = zpk(mod(1,[3 4]))

Λ

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

zpk

4-226

If you want to describe [G H] or H (unnormalized noise), from e to y, first use

mod = noisecnv(mod)

to convert the noise channels e to regular input channels. These channels are
assigned have the names e@yname.

See Also frd, ss, tf

zpkdata

4-227

4zpkdataPurpose Compute zeros, poles, and transfer-function gains of models

Syntax [z,p,k] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m)
[z,p,k,dz,dp,dk] = zpkdata(m,'v')

Description m is a model given as any idmodel object with ny output channels and nu input
channels.

z is a a cell array of dimension ny-by-nu. z{ky,ku} (note the curly brackets)
contains the zeros of the transfer function from input ku to output ky. This is a
column vector of possibly complex numbers.

Similarly, p is an ny-by-nu cell array containing the poles.

k is a ny-by-nu matrix whose ky-ku entry is the transfer function gain of the
transfer function from input ku to output ky. Note that the transfer function
gain is the value of the leading coefficient of the numerator when the leading
coefficient of the denominator is normalized to 1. It thus differs from the static
gain. The static gain can be retrieved as Ks = freqresp(m,0).

dz contains the covariance matrices of the zeros in the following way: dz is a
ny-by-nu cell array. dz{ky,ku} contains the covariance information about the
zeros of the transfer function from ku to ky. It is a 3-D array of dimension
2-by-2-by-Nz, where Nz is the number of zeros. dz{ky,ku}(:,:,kz) is the
covariance matrix of the zero z{ky,ku}(kz), so that the 1-1 element is the
variance of the real part, the 2-2 element is the variance of the imaginary part,
and the 1-2 and 2-1 elements contain the covariance between the real and
imaginary parts.

dp contains the covariance matrices of the poles in the same way.

dk is a matrix containing the variances of the elements of k.

If m is a SISO model, adding an extra input argument 'v' (for vector) returns
z and p as vectors rather than cell arrays.

Note that the zeros and the poles are associated with the different channel
combinations. To obtain the so-called transmission zeros, use tzero.

The noise input channels in m are treated as follows: Consider a model m with
both measured input channels u (nu channels) and noise channels e (ny
channels) with covariance matrix Λ

zpkdata

4-228

where L is a lower triangular matrix. Note that m.NoiseVariance = . The
model can also be described with a unit variance, normalized noise source v.

Then,

• zpkdata(m) returns the zeros and poles of G.

• zpkdata(m('n')) returns the zeros and poles of H (ny inputs and ny
outputs).

• If m is a time series, that is, nu = 0, zpkdata(m) returns the zeros and poles
of H.

• zpkdata(noisecnv(m)) returns the zeros and poles of the transfer function
[G H] (nu+ny inputs and ny outputs).

• zpkdata(noisecnv(m,'norm')) returns the zeros and poles of the transfer
function [G HL] (nu+ny inputs and ny outputs).

The procedure handles both models in continuous and discrete time.

Note that you cannot rely on information about zeros and poles at the origin
and at infinity for discrete-time models. (This is a somewhat confusing issue
anyway.)

Algorithm The poles and zeros are computed using ss2zp. The covariance information is
computed using the Gauss approximation formula, using the parameter
covariance matrix contained in m. When the transfer function depends on the
parameters, numerical differentiation is applied. The step sizes for the
differentiation are determined in the M-file nuderst.

y Gu He+=
cov e() Λ LL′= =

Λ

y Gu HLv+=
cov v() I=

Index-1

Index

A
adaptive noise canceling 4-173
adaptive parameter estimation 3-86
advanced algorithm options 4-20
advice

help facility 3-3
model validation 3-70

AIC, the Akaike Information Criterion
definition 3-72
formal derivation 4-14

Akaike’s Final Prediction Error (FPE) 3-71
AR model

estimation 3-29
estimation techniques 3-94

ARARMAX structure 3-12
ARMAX model

definition 2-27
equation 3-11
GUI 2-26

ARX model
comparing many 3-70
GUI 2-24

B
basic tools 3-3
BJ 2-27
Bode diagram 2-33
Bode plot 1-11
Box-Jenkins model

definition 3-12
equation 2-27
GUI 2-26

Burg’s method
AR command 3-95
AR option 3-30

C
channels

noise 3-60
selection 3-79

closed-loop system 3-83
communication window ident 2-2
comparing different models 3-77
comparisons using compare 3-59
complex-valued data 3-111
confidence region

for model validation 3-75
GUI 2-32
showing in plots 3-65

continuous-time model 3-46
as idss object 3-46
estimation 3-68
estimation options 3-54
spectrum 3-108
transformations 3-68

Control System Toolbox 3-96
correlation analysis 1-5
correlation between residuals and inputs 3-84
covariance matrix

estimation 3-31
in c2d/d2c 3-69
suppressing calculation 3-104

covariance method 3-30
creating models from data 2-2
cross correlation function 1-18
cross spectrum 3-15
cross validation

by simulation 3-75
relation to AIC, FPE 3-71

customized plots 2-41

Index

Index-2

D
data

channels 3-24
feedback (impulse response) 3-73
feedback (limitations) 3-83
feedback (testing) 3-84
frequency domain 3-22
frequency response 3-22
missing data 3-82
multiple experiments 3-25
simulating 2-15

data board 2-3
data handling checklist 2-14
data ranges 2-13
data representation 2-7
data views 1-5
dead time 3-41
delays

definition 3-11
delayest 3-84
estimating 3-73
in d2c 3-69
use of nk 3-78

detrending data 2-12
difference equation 1-8
disturbance 1-7
disturbance spectra 2-33
drift matrix 3-88
dynamic models

introduction 1-7

E
empirical transfer function estimate 3-21
enumeration of parameters 3-110
estimation

nonparametric 3-19

parametric 3-28
estimation data 1-5
estimation focus

algorithm property 4-16
continuous-time model 3-55
in GUI 2-13
prefiltering 3-82

estimation method
direct 2-16
instrumental variables 3-17
nonparametric 3-19
parametric (basic commands) 3-28
parametric (GUI) 2-16
prediction error approach 2-22

exporting to the MATLAB workspace 2-37
extended least squares (ELS) 3-90

F
fault detection 3-91
feedback 1-16
feedback in data

impulse response 3-73
limitations 3-83
testing 3-84

filtering data
for model quality 3-82

fixed parameter 4-18
focus

algorithm property 4-16
continuous-time model 3-55
in GUI 2-13
prefiltering 3-82

forgetting factor 3-88
FPE 3-72
frequency

function (definition) 3-9

Index

Index-3

function (GUI) 2-17
plots 3-9
range 3-9
resolution (concept) 3-22
resolution (in spa) 4-199
resolution (in spafdr) 4-202
response 2-17
scales 3-9

frequency domain
data 3-22
description 3-10
initial state 3-101

frequency function 3-10
frequency response

concept 1-11
data (idfrd object) 3-22
function 3-10
graph 3-66

G
Gauss-Newton direction 4-20
Gauss-Newton minimization 3-31
geometric lattice method

AR command 3-95
AR option 3-30

graphical user interface (GUI) 2-2
gray-box modeling 3-51
GUI 2-2

topics 2-39

H
Hamming window 3-21
HARF method 3-90

I
idarx model object 3-43
ident window 2-39
identification method

instrumental variables 3-17
nonparametric 3-19
parametric 3-28
prediction error approach 2-22
subspace 2-29

identification process
basic steps 1-13

idfrd model object 3-20
as data information 3-22
as estimated model 3-63

idgrey model object 3-51
idpoly model object 3-39
idproc model object 3-41
idss model object 3-46
impulse response

concept 1-11
definition 3-10

Information Theoretic Criterion (AIC) 3-71
initial condition 3-31
initial parameter values

iterative search 3-54
startup models 3-99

initial state 3-100
frequency domain 3-101
in GUI 2-20, 2-23
state space model 3-47

innovations form 3-13
input signals 1-7
instrumental variable 3-17

IV4 method 3-29
IVAR method 3-30

iterative search 3-31
local minima 3-98

Index

Index-4

use in pem 3-106

K
Kalman filter 3-87
Kalman gain 3-14

L
lag window

definition 3-16
in spa 3-21

layout 2-40
least mean squares (LMS) 3-89
least squares 2-25
Levenberg-Marquardt 4-20
LimitError 4-19
linear regression

recursive algorithms 3-87
using ARX 3-106

linear trends 3-81
linestyles 3-65
local minima 3-98
loss function 3-109

M
main ident window 2-39
markers 3-65
maximum likelihood

criterion 3-33
method 3-17

MaxIter 4-20
MaxSize 4-18
memory horizon 3-88
merge experiments 3-25
Minimum Description Length (MDL) 3-72

missing data 3-82
model

continuous-time 3-46
continuous-time (estimation option) 3-54
continuous-time (spectrum) 3-108
continuous-time (transformations) 3-68
nonparametric 3-11
output-error 1-9
parametric 2-21
properties 1-11
set 1-5
state-space 1-9
structure 2-21
uncertainty 3-75
view functions 2-31
views 1-9

model board 2-3
model error model 3-74
model order 1-8
model structure 1-5
model uncertainty

GUI 2-32
showing in plots 3-65

model validation
available methods 3-70
definition 1-6

model views 1-5
modified covariance method 3-95
multioutput models

criterion 3-33
multiple experiments 3-25
multivariable ARX model 3-43
multivariable systems

definition 1-19
loss function 3-109
model structures 3-77

multivariate signals 3-94

Index

Index-5

N
N4Horizon 3-36
N4Weight 3-36
na, nb, nc, nd, nf

parameter definitions 3-11
noise 1-7
noise channels 3-60
noise model 1-9
noise source 1-9
noise-free simulation

concept 1-10
for model validation 3-75

nonequal sampling 3-25
nonparametric estimation 3-19
nonparametric identification 1-5
normalized gradient (NG) approach 3-89
numerical differentiation

for gradients 3-54
for transformations 3-69

Nyquist frequency 3-107
Nyquist plot 3-21

O
OE 2-27
offset levels 3-81
offsets 3-81
online algorithms 3-86
order editor 2-22
outliers 3-81

feedback 3-74
signals 1-5

output feedback 3-74
output signals 1-7
output-error model

definition 1-9
equation 2-27

GUI 2-26
prediction 3-59
state-space model 3-47

P
parametric identification 1-5
parametric model 2-21
parametric model estimation 3-28
periodic input 3-96
periodogram

etfe for time series 3-94
from etfe 3-22

physical equilibrium 3-81
pole

concept 1-12
GUI 2-34

pole-zero cancellation 3-73
poorly damped systems 1-19
prediction 3-58

error identification 2-22
error method 3-17
k step ahead 3-59

prediction error
definition 3-16
pe command 3-59

preferences
in GUI 2-41

prefiltering
for model quality 3-82
in GUI 2-13

process model 3-32
idproc 3-41

Q
Quickstart menu item 2-14

Index

Index-6

R
random walk 3-87
recursive identification

basic algorithms 3-86
commands 3-4
pseudolinear regression approach 3-90

reference list 1-22
regression vector 3-86
resampling 2-14
residual analysis

concept 1-18
resid command 3-73

residuals 1-3
resolution

concept 3-22
in spa 4-199
in spafdr 4-202

robustified criterion
against outliers 3-81
in linear regression 3-106
LimitError 4-19
relation to loss function 3-109

S
sampling interval 1-7
SearchDirection 4-20
segmentation problem 3-91
sequential estimation 3-86
sessions (GUI) 2-5
SHARF method 3-90
shift operator 2-27
simulating data 2-15
simulation

concept 3-58
noise level 3-108

spectral analysis

concept 1-5
time series 3-94

spectral density 3-108
spectrum 3-9
spectrum normalization 3-107
startup identification procedure 1-15
state variable 1-9
state vector 3-13
state-space model

continuous time 3-14
definition 1-8
equation 3-13
GUI 2-28
output-error model 3-47
stochastic 3-13

step response
concept 1-11

structure 1-5
structure matrices 3-48
subspace method 2-29

T
testing for feedback 3-84
time constant 3-41
time delay

definition 1-8
in idproc 3-41

time domain
description 3-10

time-continuous systems 3-40
time-series model

prediction 3-59
spectral estimation 3-21

time-series modeling
general remarks 3-93

Tolerance 4-20

Index

Index-7

trace 3-31
transfer function

concept 1-9
definition 3-10

transformations of noise models 3-109
transient response 1-11

graph 3-66

U
uncertainty

parameter free state-space model 3-76
suppressing calculation 3-104

unnormalized gradient (UG) approach 3-89

V
validation data 1-3

W
white noise 1-10
window sizes 3-21
working data 1-5
working data set 2-4

Y
Yule-Walker approach

AR command 3-95
AR option 3-30

Z
zero

concept 1-12
GUI 2-34

zero-pole format 3-64

zeros and poles
graph 3-66

Index

Index-8

	Getting Started
	What Is the System Identification Toolbox?
	Basic Questions About System Identification
	Common Terms Used in System Identification
	Basic Information About Dynamic Models
	The Basic Steps of System Identification
	A Startup Identification Procedure
	Reading More About System Identification

	The Graphical User Interface
	The Big Picture
	Handling Data
	Data Representation

	Examining Models
	Additional GUI Topics
	Mouse Buttons and Hot Keys

	Tutorial
	Overview
	Toolbox Commands
	An Introductory Example to Command Model
	The System Identification Problem
	Impulse Responses, Frequency Functions, and Spectra

	Data Representation and Nonparametric Model Estimation
	Data Representation
	Frequency Domain Data

	Parametric Model Estimation
	Defining Model Structures
	Examining Models
	Model Structure Selection and Validation
	Dealing with Data
	Offset Levels

	Recursive Parameter Estimation
	Miscellaneous Topics

	Function Reference
	Functions — By Category
	Help Functions
	Graphical User Interface
	Simulation and Prediction
	Parameter Estimation
	Manipulating Model Structures
	Assessing Model Uncertainty
	Model Structure Selection
	General

	Functions — Alphabetical List
	advice
	aic
	Algorithm Properties
	ar
	armax
	arx
	arxdata
	arxstruc
	balred
	bj
	bode
	compare
	covf
	cra
	c2d
	delayest
	detrend
	diff
	d2c
	EstimationInfo
	etfe
	fcat
	feedback
	ffplot
	fft/ifft
	frd
	freqresp
	fpe
	fselect
	get
	getexp
	idarx
	iddata
	ident
	idfilt
	idfrd
	idgrey
	idinput
	idmdlsim
	idmodel
	idpoly
	idproc
	idss
	impulse
	init
	isreal
	ivar
	ivstruc
	ivx
	iv4
	LTI Commands
	merge (iddata)
	merge (idmodel)
	midprefs
	misdata
	nkshift
	noisecnv
	nuderst
	nyquist
	n4sid
	oe
	pe
	pem
	pexcit
	plot (iddata)
	plot (idmodel)
	polydata
	predict
	present
	pzmap
	rarmax
	rarx
	rbj
	realdata
	resample
	resid
	roe
	rpem
	rplr
	segment
	selstruc
	set
	setstruc
	setpname
	sim
	simsd
	size
	spa
	spafdr
	ss
	ssdata
	step
	struc
	tf
	tfdata
	timestamp
	view
	zpk
	zpkdata

	Index

